IEEE New Jersey Coast Section History
IEEE New Jersey Coast Section History | |
---|---|
Established date | 1965/03/20 |
IEEE Region | [[|1]] |
IEEE Council | |
Geographic region | New Jersey Coast |
Region area | |
Principal cities | |
Home page | |
List of Subsections in this Section
|
Brief History
The New Jersey Coast Section of the IEEE was established March 20, 1965. Chairman at the time was Dr David C Hogg, also Member of National Academy of Engineering.
Below is a list of awards to members of the New Jersey Coast Section from 1965 -1984.
Centennial Awards: John G. Nordahl, Martin V. Schneider, Robert C. Eckenfelder, A. Gardner Fox, Bruce C. Miller, Vasant K. Prabhu, Luke G. Schimpf, Robert W. Wilson, Mary N. Youssef.
A Day at the Museum with Dr Robert Wilson
IEEE ComSoc History Committee, IEEE Region 1, IEEE NJ Coast Volunteers, and community members host A Day at the Museum with Dr Robert Wilson with a STEM Mentoring Lunch with Leaders & Luminaries, a Meet and Greet Social Experience, and a Tour of the Museum. On 15 December 2023 at 12 Noon pizza and presentations by students with Mentoring by Dr Robert Wilson and additional IEEE Leaders & Luminaries followed by a Meet and Greet with Dr Robert Wilson, friends and colleagues who will speak about the upcoming IEEE Milestone Project Echo, Telstar, and Discovery of Background Microwave Radiation.
IEEE Day 2023: A Day at the Museum
IEEE Day 2023: A Day at the Museum brought together many people of all ages; Members, Stakeholders, Students, Teachers, Historians, and more came out to participate in the STEM Mentoring Lunch with Leaders & Luminaries, a Tour of the Museum, and Social Experience. There was also a watch party providing an opportunity to prepare for the upcoming IEEE Milestone Project Echo. Some of the videos may be found on the following YouTube Playlists including a growing Project Echo, Telstar, and Big Bang collection featuring people and projects; and another collection featuring local Leaders & Luminaries of the present and over the years.
Section History Initiative Emerging from the Pandemic
Beginning in late 2019 a novel Coronavirus (COVID-19) began to spread creating a global pandemic and drawing many section, region, national, and international activities, conferences, and meetings to online only. IEEE stepped up to the challenge of providing resources for Members to continue to engage, participate in events and activities, and extend Humanitarian Activities to important themes such as Connecting the Unconnected. The technology gap significantly reduced resilience of many people who do not have access to power, connectivity, ability to work and study at home, and at the same time, demand for online telehealth increased in an unprecedented way.
One of the opportunities included many online resources, new programs, and projects such as accessible Distinguished Lecturers and for the Computer Society, the Distinguished Visitors Program. In the New Jersey Coast Section, we started a new Podcast, "Leaders and Luminaries," with the first episode here: Preparing for the Metaverse: Discussions on the Challenges and Opportunities of 3D Immersive Platforms with the Guests: Joachim Jorge, PhD IST, the School of Engineering of the University of Lisbon, Portugal; Lisa Messeri, PhD Assistant Professor of Anthropology at Yale University; Andre Oboler, PhD LLM CEO of the Online Hate Prevention Institute.
During the height of the COVID-19 emergency, many of our activities online increased and more variety was added to our meetings and opportunities for Members and the community. Highlights are represented in the Collage:
In 2023 the Section began conducting a few hybrid and in person activities and events including a June 2023 Region 1 Women in Engineering supported STEM Event at the AT&T Science & Technology Center and Museum, A Day at the Museum: National Inventors Hall of Fame Innovation Open Mic: Raising Voices STEM Activity & Museum Event Featuring James Edward West IEEE Life Fellow which was Mentored by many Members of the IEEE including but not limited to: Victor B Lawrence, PhD IEEE Life Fellow. "Over 100 Years of the IEEE Medal of Honor," the Book, courtesy of the IEEE Foundation was presented to Dr Christine Girtain, New Jersey State Teacher of the Year who is the Teacher Collaborator for our Event.
Also in June 2023 a popular and well attended Picnic was held at Thompson Park in Holmdel, New Jersey.
On 12th at 12 the Not Crawford Hill picnic was held complete with watermelon and cake as promised. A vote was taken and it was decided the events will continue into the future. We saw many Luminaries from our Section including IEEE Medal of Honor winner Dr Herwig Kogelnik.
Connecting with Region History Initiative
The most important thing IEEE can do for Members is to celebrate their remarkable contributions which are evident in our lives, and inspire Inventors of the Future to advance technology for humanity. Region 1 Historians Initiative continues the tradition and updates our methods to include diversity, equity, accessibility, inclusion, plus (DEAI), and the extensive resources available through IEEE such as the Region 1 History Wiki, the R1 Interactive Milestones Map, social media, IEEE TV, live and hybrid events, so we can: Connect with Milestones; Capture Oral History; Women in Region Engineering History; Humanitarian History to bring more meaningful aspects of History into the activities of IEEE Members and the community. History enhances all of our experiences with IEEE including vitality, identifying and recognizing mentors, re-interpreting original sources for our time, engaging in lifelong learning, inspiring future innovations and achievements.
Humanitarian Technology Timeline
1579 -- Ambroise Paré (1510–1590) who was a military physician, treated soldiers and published his complete works, part of which described some of the artificial limbs he fitted on his amputees. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3664166/
1847 -- Dr. Ignaz Philipp Semmelweis (from Wikipedia) (1 July 1818 – 13 August 1865) initiated handwashing using of a solution of chlorinated lime (calcium hypochlorite) after autopsies and examining patients to potentially destroy particles potentially being transmitted and causing infections. The maternal mortality rate (MMR) was was reduced in one clinic by 90% from an April 1847 rate of 18.3% to a June rate of 2.2, July 1.2% and August 1.9%. However, his peers did not accept his methods and believed he was losing his mind. He died of sepsis two weeks after being admitted to an asylum. Semmelweis Museum: https://semmelweismuseum.hu/
For more information, see Wikipedia link above.
Excerpts:
"Only belatedly did his observational evidence gain wide acceptance; more than twenty years later, Louis Pasteur's work offered a theoretical explanation for Semmelweis' observations: the germ theory of disease."
"Other legacies of Semmelweis include:
- Semmelweis is now recognized as a pioneer of antiseptic policy.
- Semmelweis University, a university for medicine and health-related disciplines (located in Budapest, Hungary), is named after Semmelweis.
- The Semmelweis Museum of Medical History is located in the house where he was born.
- The Semmelweis Klinik, a hospital for women located in Vienna, Austria.
- The Semmelweis Hospital in Miskolc, Hungary.
- The Semmelweis Hospital in Kiskunhalas, Hungary.
- In 2008, Semmelweis was selected as the motif for an Austrian commemorative coin.
- Minor planet 4170 Semmelweis is named after him.
- A postage stamp was issued by Hungary on 1 July 1932 in the Famous Hungarians series: Stamp:Ignác Semmelweis (1818~1865), physician
- Inclusion as a Google Doodle to promote handwashing beginning on 20 March 2020 during the COVID-19 pandemic.
- The Ignác Semmelweis Prize, the most prestigious Hungarian medical award.
- On 13 January 2023, a Bust of Semmelweis was unveiled at the Queen Mary University of London."
1952 -- Dr. Virginia Apgar (7 June 1909 - 7 August 1974) developed The Apgar evaluation which became standard practice, reduces infant mortality, and is now performed on all children born in hospitals worldwide.
https://profiles.nlm.nih.gov/spotlight/cp/feature/biographical-overview
1986 -- Dr. Patricia Bath MD (1942 - 2019) discovered and invented a new device and technique for cataract surgery known as laserphaco. Two million in the United States and 10 million globally have cataract surgery each year.
National Inventors Hall of Fame: https://www.invent.org/inductees/patricia-bath
"The ability to restore sight is the ultimate reward," she said.
Inspiration: My love of humanity and passion for helping others inspired me to become a physician.
https://cfmedicine.nlm.nih.gov/physicians/biography_26.html
Humanitarian Technology History
Recent article showcasing a Humanitarian Technologies project funded by IEEE EPIC for people with blindness: low cost wearable device for the visually impaired.
Milestones Representing Achievements by Women
A new initiative. For more information from the IEEE History Center, please see the Proposed List.
LIST OF TECHNICAL ACHIEVEMENTS BY WOMEN FOR PROPOSAL AS IEEE MILESTONES
In hopes of encouraging the proposal of IEEE Milestones reflecting the contributions of women to IEEE’s fields of interest, IEEE History Center staff have researched and presented a table of technical achievements by women that would be suitable for proposal. http://ieeemilestones.ethw.org/List_of_Achievements_Suitable_for_Milestones_featuring_Women This list is not intended to be comprehensive, but to begin the discussion.
We are adding information to the items presented in the list above:
'Graphical calculator” – a method of considering the impacts of capacity and inductance on long electrical transmission lines which greatly simplified the calculations Edith Clarke
Please submit your suggestions to: kit@ieee.org
We are adding to the list already with suggestions from our colleagues including but not limited to:
Longley-Rice Model Anita Longley and P.L. Rice materials submitted and in progress with #2021-13 Longley-Rice Irregular Terrain Model, 1960s-1983.
A description of the method was published by the U.S. government under the title "Prediction of tropospheric radio transmission loss over irregular terrain. A computer method-1968", A. G. Longley and P. L. Rice, ESSA Tech. Rep. ERL 79-ITS 67, U.S. Government Printing Office, Washington, DC, July 1968. This document followed on an earlier publication titled "Transmission loss predictions for tropospheric communication circuits", P.L. Rice, Volume I & II, National Bureau of Standards, Tech. Note 101.
Advances in Computing Applied to Neurophysiology Thelma Estrin materials collected
Hydrazine/hydrazine resistojet propulsion system Yvonn Brill (from the original list) materials collected
Industrial and safety engineering Ellen Henrietta Swallow Richards
Advances in Polarization-control Technologies Kristina M Johnson materials collected
Used in hundreds of CGI movies.
Laserphaco Probe for cataract treatment in 1986 Patricia Bath in process
Used to treat 10 million cataracts per year.
Advances in Standards and Refrigeration Engineering Mary Engle Pennington
EPIC Judith R. Faulkner
Electronic Medical Records for over 200 million people.
Theseus Mary Elizabeth Shannon
Information Theory collaboration with Claude Shannon.
Leah Jamieson materials collected
Janet Jackel in progress
Apgar Test Virginia Apgar in progress
'Apgar Score... was the first standardized method for evaluating the newborn's transition to life outside the womb. "Five points—heart rate, respiratory effort, muscle tone, reflex response, and color—are observed and given 0, 1, or 2 points. The points are then totaled to arrive at the baby's score." Apgar went on to relate the score more closely to the effects of labor, delivery, and maternal anesthetics on the baby's condition. Colleagues Dr. Duncan Holaday and Dr. Stanley James helped her make these connections, providing new methods of measuring blood gases and blood levels of anesthesia, and contributing specialized knowledge in cardiology. Together, they were able to demonstrate that babies with low levels of blood oxygen and highly acidic blood had low Apgar Scores and that giving cyclopropane anesthesia to the mother was likely to result in an infant's low Apgar Score. Finally, the Collaborative Project, a twelve-institution study involving 17,221 babies, established that the Apgar Score, especially the five-minute score, can predict neonatal survival and neurological development.'
Sharing Women's History
Our diversity, equity and inclusion (DEI) features will bring focus to women who in spite of various efforts remain underrepresented in the field of engineering and computing and among IEEE Membership. DEI topics will include the profession, technology and history of engineering, and will recognize women both contemporary and from history. Many people choose STEM careers for professional and economic opportunities, to advance scientific achievements, to engage in innovation, and or to implement humanitarian and sustainable solutions. These solutions can improve resilience, reduce suffering and improve quality of life (QoL) and quality of experiences (QoE) for individuals, locally and globally, and across society, at all scales, everywhere. Yet STEM programs have not resulted in a change in a variety of outcome measures, and in particular, in engineering and computer technologies.
Future systems will require a new and modernized approach to more effectively reach people where they are in place and in life through intelligent personalized design in digital connectivity access and solutions for all users. DEI efforts may be leveraged to accomplish this goal. Humanity is facing historic issues associated with life on this planet (climate change, pandemics, etc.). A framework for resolving these issues is the United Nations Sustainable Development Goals (UN SDGs). By taking a diverse and inclusive approach, the full range of researcher, stakeholder, community, and practitioner abilities may be utilized to address these challenges and better serve to advance technology for humanity.
One of our Colleagues, Prof. Mathini Sellathurai, (SM) who was awarded The IEEE Fred W. Ellersick Prize (awarded annually by the IEEE Communications Society (IEEE ComSoc) for a best original paper published in any Communications Society Magazine in the previous three calendar years), conducted some of her research on Turbo Mimo in our Section with collaborators at Bell Labs Crawford Hill. Mathini has recently been awarded the IEEE 2022 Women in Communications Engineering (WICE) Mentorship Award. She will be presented with a plaque at IEEE ICC 2023. Mathini has been inspired in the field of engineering by her teachers including her advisor, Simon Haykin, PhD, colleagues, including Gerald Foscini, PhD, Reinaldo Valenzuela, and Bell Labs role models, Claude Elwood Shannon and Mary Elizabeth (Betty) Moore Shannon. As a mentor, Mathini shares her interests enthusiastically and encourages others across the years.
https://blogs.scientificamerican.com/voices/betty-shannon-unsung-mathematical-genius/
https://techchannel.att.com/playvideo/2010/03/16/In-Their-Own-Words-Claude-Shannon-Demonstrates-Machine-Learning
https://www.technologyreview.com/2018/12/19/138508/mighty-mouse/
The AT&T Science & Technology Innovation Center, located on its AT&T Labs campus, in Middletown, New Jersey and in the IEEE New Jersey Coast Section contains many very interesting artifacts across the nearly one hundred fifty years since Alexander Graham Bell's invention of the telephone, and collaborations in innovation and humanitarian activities with Mabel Hubbard Gardiner Bell, changed the world. Among the artifacts is one of the mouse, Theseus, created by Claude and Betty Shannon, demonstrating early artificial intelligence -- how machines learn. An interactive system has been developed so visitors to the Museum can experiment with Theseus to see how the Mouse can learn the maze and find the cheese.
Celebrating Our History: Inventing Our Future - WIE STEM Activity
National Inventors Hall of Fame Innovation Open Mic: Raising Voices STEM Activity & Museum Event Featuring James Edward West IEEE Life Fellow.
Celebrating Our History: Inventing Our Future - 3 Activities
By Celebrating Our History, we can find the important threads that lead to Inventing Our Future - and specifically - to Advancing Technology for Humanity. We can empower people to recognize the great potential they have as engineers to reduce disparity or widen the gap with the work they do each day, either including people or omitting them from opportunities, which can be emphasized through diversity, equity, inclusion (DEI). Many of our IEEE Milestones exemplify the impact of such engineering achievements in advancing technology for humanity and our IEEE activities help us gain perspective. New in 2022, IEEE ComSoc History is stepping up emphasis on Milestones with DEI and accessibility through a "Five in Five" program. The program emphasizes encouraging Members to propose Milestones that can reveal involvement by diversity, equity, inclusion, accessibility.
The IEEE History Center is funded by donations from Members, and coordinated with funding from the IEEE Foundation. A recent presentation by one of IEEE History Center's Professional PhD Historians, Mary Ann Hellrigel, PhD may be viewed at the link: "See the USA the AIEE Way."
In 2019: We held three meetings funded by IEEE-USA to PACE, SIGHT Group. 1) On IEEE Day 2019 we visited the Thomas Edison National Park and Museum, 2) hosted a visiting lecturer Professor Mathini Sellathurai from Heriot-Watt University Edinburg Scotland, UK, and 3) held a kick-off meeting for our Inventors Seminars featuring Dr Giovanni Vannucci and Dr Thomas Willis, III.
1)
Celebrating Our History: 75th Anniversary of the Transistor
In 2022 we Celebrate Our History with the 75th anniversary of the transistor, invented by John Bardeen, Walter Brattain, and William Shockley, (the team reported to William Shockley) right here in New Jersey at Bell Telephone Laboratories.
Many of us have visited the former Bell Labs Holmdel campus on Crawfords Corner Road in the New Jersey Coast Section enhanced by several monuments including the famous water tower in the shape of a transistor. Now redeveloped as Bellworks, we can still visit the site and reminisce about the experiences steeped in history. A number of monuments may be seen around the campus and inside the building with information describing the many leaders, inventions, technologies, and milestones influential in fields of interest to IEEE Members. The IEEE New Jersey Coast Section shares this link to celebrations on the occasion of the 75th Anniversary of the Transistor: https://spectrum.ieee.org/celebrate-transistor-anniversary-with-ieee
Treasure in our Section: Crawford Hill
There are few work locations with History such as Crawford Hill. This Bell Labs site is unique in Engineering and Scientific History. It has served as a community of scientists, engineers, and colleagues. It has served visiting researchers, students, and business collaborators. It is the very spot, declared to be a National Historic Site, where the Nobel Prize winning Big Bang experiments were conducted marking breakthroughs that are not only significant in the world of science, but across society, with evidence even in our popular culture. Crawford Hill is a location with a monumental History. It is a great time to reflect and to Celebrate Our History -- a History marked by significant achievements, Nobel Prizes, IEEE Fellows, Inventors, Innovators, and more -- a History that will require a great deal of effort to assemble in one place. The impact of Bell Labs Crawford Hill has touched many, is far reaching, and has persisted across time. There is no doubt the effects will continue into the future even as we recognize the transition, the significant loss of the unique community of Bell Labs at Crawford Hill.
An early article appeared announcing the listing of Crawford Hill for sale. Recently the sale was announced, and in Spring, people will transition to the Murray Hill location, and away from our Section.
Some of the winners of major IEEE Awards, Members of Bell Labs Crawford Hill include:
Herwig Kogelnik, 2001; Gerard J. Foschini (Jerry), 2008
Gerard J. Foschini (Jerry), 2004; Reinaldo A. Valenzuela, 2010
Celebrating Our History - IEEE Milestone Reflection of Radar off the Moon - Project DIANA
Click to view IEEE NJ Coast Section Milestone DIANA Video
Celebrate Our History -- a New Jersey Coast Section IEEE Milestone 2016-02 Reflection of Radar off the Moon, Project DIANA.
The 2019 Joint IEEE Princeton/Central Jersey and New Jersey Coast Section Awards Banquet was held at the Grand Ballroom, Colts Neck Inn, Colts Neck, NJ, on Friday, May 17, 2019, and began at 6 pm. The IEEE Princeton/Central Jersey Section and the IEEE New Jersey Coast Section organized this joint event to pay tribute to the new IEEE Fellows in the Sections, the IEEE Region 1 and Section Award recipients, and to celebrate the IEEE Milestone Project DIANA - Detection of Radar Signals Reflected from the Moon. The significance of this milestone is summarized by the citation: On 10 January 1946, a team of military and civilian personnel at Camp Evans, Fort Monmouth, New Jersey, USA, reflected the first radar signals off the Moon using a specially modified SCR-270/1 radar. The signals took 2.5 seconds to travel to the Moon and back to the Earth. This achievement, Project Diana, marked the beginning of radar astronomy and space communications.
An Introduction to the IEEE Milestone for Project DIANA was given by Dr Al Kerecman, and the Keynote Speaker was Dr Gregory Wright.
Keynote Speaker Dr Gregory Wright
Abstract: Shortly after the end of the Second World War, radio engineers from Fort Monmouth succeeded in bouncing radar signals off of the moon. In the next twenty years, radar signals would also be reflected off the planets Mars and Venus. Why would anyone want to do this and what was learned?
The answer to this question is a fascinating tale of the early space age and Cold War superpower rivalry.
The celebration focused on recognizing the achievements of our members and their contributions to the engineering profession, our community, and the IEEE Princeton/Central Jersey and New Jersey Coast Section activities. The Banquet provided a unique opportunity for companies and organizations to meet and congratulate the awardees and showcase their local presence.
Bio: Gregory Wright is a Member of Technical Staff at Nokia Bell Labs, where he works on antenna arrays and their implementation in low cost integrated circuits. Most relevant to the topic at hand, he was the last radio astronomer hired by Bell Labs. He was a co-investigator on the Antarctic Submillimeter Telescope and Remote Observatory, the first permanent radio telescope located at the South Pole. Before joining Bell Labs, he was co-founder of two start up companies.
Greg received a Ph.D. in physics from Princeton University, a master's degree in mathematics from Cambridge University and his bachelor's degree in physics from Harvard University.
On Saturday, 18 May 2019 at InfoAge in Wall Township, New Jersey, the site of the initial Moonbounce Experiment, the IEEE Milestone plaque was placed at a ceremony at 10:00am, including an unveiling by the Mayor of Wall, the previous president of IEEE, John Vig. Dr Gregory Wright presented. Refreshments were served.
New IEEE Milestone Reflection of Radar off the Moon Celebration in the IEEE New Jersey Coast Section
Perhaps the most important thing IEEE can do for Members is to recognize their remarkable contributions which are evident in our lives and provide inspiration for future innovators to advance technology for humanity. Coincidentally in this same year, the world remembers and celebrated the Apollo mission to the Moon, and we celebrated his sister, Diana with our own Section IEEE Milestone for Project Diana, the first successful Earth-Moon-Earth bounce of radar which demonstrated communication beyond the ionosphere, introducing radar astronomy and space communication. This important IEEE Milestone in History gave us the opportunity to gather together, meet with others in our Section, and remember the achievements of those who have come before us. We share herein the History of the latest IEEE Milestone Reflection of Radar off the Moon which was Celebrated 17 May 2019 at the Awards Banquet and also on 18 May 2019 at the original site of Camp Evans, now InfoAge in Wall Township, New Jersey.
It's totally worthwhile to spend the time and energy to investigate and promote IEEE Milestones in each Section. Not only is there much to be celebrated, there is inspiration in every achievement. There is a substantial amount of research and documentation required in order to succeed and add an IEEE Milestone. Thank-you, Al Kerecman of the IEEE NJ Coast Section, and Rob Colburn of the IEEE History Center, and everyone who played a role in this achievement. This is no small effort. To give a glimpse behind the curtain of the significance of the newest Milestone for Project DIANA, the background materials are being included in the Section History.
On 10 January 1946, a team of military and civilian personnel at Camp Evans, Fort Monmouth, New Jersey, USA, reflected the first radar signals off the Moon using a specially modified SCR-270/1 radar. The signals took 2.5 seconds to travel to the Moon and back to the Earth. This achievement, Project Diana, marked the beginning of radar astronomy and space communications.
Excellent support documentation accompanied the application.
What is the historical significance of the work (its technological, scientific, or social importance)?
Proof of Concept
The effort resolved doubts about whether Electromagnetic Waves suitable for long-range communication and RADAR could penetrate the Earth’s Ionosphere. It was the first documented experiment in radar astronomy and in actively probing another celestial body, and it began the space age, with Site Diana, Camp Evans, Fort Monmouth, New Jersey, USA, personnel demonstrating the ability to communicate with extraterrestrial bodies beyond Earth. These results emboldened a series of ideas ranging from worldwide wireless communication, radar astronomy, artificial satellites, and rocket launched probes to the moon and planets.
Prior to the success of the experiment, wireless communication was performed using “skywave” communication up to about 400 km, where signals were reflected or refracted off the ionosphere. While this form of communication was not limited by curvature of the earth line-of-sight, it was restricted in frequency, range and data rate. Demonstrating that signals could travel from the earth to the moon and back was proof of concept for the idea of what is known as Earth-Moon-Earth (EME), or “moon-bounce” communication.
Following the success of the project, the US Navy set out to explore the implications and applications of this form of communication - the idea of a reliable, secure EME scheme. The first major milestone to this Passive Moon Relay project happened on July 24, 1954, where voice was successfully transmitted from Stump Neck, Maryland to Washington, DC. Following this success, on November 20, 1955, transmissions were sent to San Diego, California and soon after to Wahiawa, Hawaii.The system in its completed state began seeing use in 1960 and was expanded to accommodate ship-to-shore transmissions. In the later 1960s the system became obsolete due to the advent of artificial satellites in orbit to serve the same purpose.
The Diana Project involving a two-way path, concluded that one-way communication paths to and from the moon as well as other celestial bodies were achievable, and “that even without an extraordinary antenna system, an FM broadcast station on earth could be readily received on the moon.”
Radar Astronomy
Before 1946, scientists observed the universe using large passive radio telescopes that caught and recorded radio waves emanating from the universe outside the earth’s atmosphere. This technique of passive reception was part of a field known as radio astronomy. Following the success of Project Diana, scientists had access to what is known as radar astronomy. Unlike radio astronomy, this technique is an active observation by reflecting microwaves off objects and analyzing the reflected signals, in the same manner as Project Diana had done with the moon. Radar astronomy has many advantages over previous forms of observation. The ability to control and measure the source of the transmission allowed scientists to extract information that was difficult to obtain before, such as composition and relativistic data. Since 1946, this technique has been used to gather a wealth of data about the geological and dynamic properties of many of the planets, moons, and asteroids that orbit our sun. Additionally, it has been used to determine the length of the astronomical unit (AU) and the scale of the solar system itself.
Space Age
Almost more importantly than any other benefit, the success of the project became a symbol that lead to the beginning of the Space Age for the United States. Days after the success of the project, the New York Times commented that "somehow ... the moon and all the heavenly bodies become more real ... more than a guide to navigators and an inspiration to poets ... tangible objects to which we can reach out." For the first time in its history, the US was able to “touch the stars” so to speak, where it could communicate with objects and potential beings well outside of its grasp up until that point. With this new found reach from a communications perspective, the US sought to extend that to a physical presence. In the early 1950s, President Dwight Eisenhower was skeptical about the possibility of human spaceflight, although he did see promise in artificial satellites for commercial and military use. However, the space stage was finally set to explore our solar system, when President John F. Kennedy set a goal of sending men to the moon by 1968.
Detect and Control Guided Missiles
Following the success of the project, the War Department talked about "radio control of missiles orbiting Earth above the stratosphere." Indeed, today, earth satellites and space probes to the farthest reaches of our solar system are directed and re-positioned via this “radio control” of the probe vehicles.
Boosted US Morale
This achievement brought promise of a coming golden age of science and technology arising from the aftermath of World War II. It refocused engineers and scientists to new goals centered on benefiting humanity, and created a need for developing solid state technologies, capable of surviving space launch and environments.
What obstacles (technical, political, geographic) needed to be overcome?
Bandwidth Requirements
LTC. DeWitt, E. King Stodola, Jack Mofenson, Dr. Harold Webb, Herbert P. Kauffman and a contributing team including: Edwin Armstrong, W. S. McAfee, F. Blackwell, G. Cantor, J. Corwin, A. Davis, R. Guthrie, A. Kampinsky, H. Lisman, C.G. McMullen, W.S. Pike, J. Ruze, J. Snyder, and O.C. Woodward, had calculated that they needed a narrow bandwidth of +-20 Hz on a 111.5 MHz signal to properly conduct the experiment. This meant that, as a base requirement to success, they needed to have a very stable system. This stability requirement far exceeded the usual requirements on most radars, so the team replaced the SCR270/1 receiver by modifying E. H. Armstrong’s developed transmitting and receiving equipment that employed a single, crystal controlled source that was multiplied to provide the first three separate local oscillator frequencies needed, and which also supplied control of the transmitter oscillator. After three fixed heterodyne stages, the final heterodyne employed an independent adjustable-frequency (tunable) crystal for the local oscillator injection, to achieve the final intermediate frequency (IF) of 180 cps (Hz) with a bandwidth of 50 cps (Hz).
The potential stability issues were magnified due to the relative motions of the moon and Earth, which caused a variable Doppler shift in frequency calculated to be a maximum of 327 Hz, putting the receiving signal outside the band of a fixed tuner, thus, requiring the last stage to be tunable.
Limitation on Antenna movement and gain.
Due to the limitations in hardware, the antenna could only move in the azimuth (about the horizon), and could not be elevated. Because of this limitation, the team only had about half an hour each time the moon rose and set to conduct the experiment, as opposed to tracking the entirety of its arc in the sky. This vastly decreased the amount of time to properly conduct the experiment.
The SCR 270/1 radar antenna was insufficient to achieve a positive signal to noise ratio (S/N) for the project, therefore two antennas were assembled together to produce a gain of about 250 above an isotropic radiator, providing a calculated S/N margin of about 15dB above the system and path length losses.
Power, pulse width, and duty cycle.
The transmitter that had a peak power of 3 kw, was modified to produce 15 kw, with a pulse width of 0.05 seconds and a pulse repetition rate of of 4 seconds, allowing the moon to be observed as an isotropic reflector.
System components were being pushed.
At the facility, the team had access to old or used hardware from the war, and found it necessary to modify every element of the system to achieve their goal. There were frequent reports of parts failing due to stresses the setup was putting on them.
Political
Some weren't convinced of the project’s usefulness, and thought it was a waste of time and money. Once achieved, however, the doors opened to a new era – radar astronomy and the space age were born, with new emphasis placed on solid-state research and development to address these new requirements.
What features set this work apart from similar achievements?
There are no prior documented similar achievements; this was the first of its kind, driven by the team’s scientific passion, and a future requirement to develop a defense against rocket (missile) threats. Zoltan Bay and a Hungarian team, achieved a similar result on February 6, 1946. Since their receiver did not have the sensitivity required, and their antenna did not have the gain needed to directly detect the reflected signal, they used an accumulating coulometer to acquire a 30 fold increase in the signal to noise ratio, producing a signal, post processing, 4% above the noise floor. Zoltan Bay acknowledged the prior accomplishment of Project Diana and authenticated it’s findings to be, in fact, correctly presented (see, “Reflection of Microwaves from the Moon”, Z. Bay, link.springer.com, article received 18 th November 1946).
References to establish the dates, location, and importance of the achievement: Minimum of five (5), but as many as needed to support the milestone, such as patents, contemporary newspaper articles, journal articles, or citations to pages in scholarly books. You must supply the texts or excerpts themselves, not just the references. At least one of the references must be from a scholarly book or journal article.
References:
1) Front Page Lead Article, New York Times, January 25, 1946, and also on January 26, 1946.
2) Mofensen, J., “RADAR Echoes From the Moon”, Electronics, Volume 19, April 1946, pp 92 – 98.
3) Gootee, Tom (April 1946), “RADAR reaches the moon”, Radio News, Ziff-Davis Publishing Co., 35 (4), pp. 25 – 27.
4) Dewitt, J. H., Jr.: Stodola, E. K. (March 1949), “Detection of Radio Signals Reflected from the Moon”, Proceedings of the IRE, 37 (3) pp. 229 – 242.
5) http://projectdiana-eme.com
6) Butrica, Andrew J. (1996). To See the Unseen: A History of Planetary Radar Astronomy. NASA. Archived from the original on 2007-08-23, pp 6 - 10.
7) Buderi, Robert, “The Invention that Changed the World”, Chapter 13 (The New Astronomers), Pub. Simon and Schuster, Copyright 1996, ISBN: 0-684-81021-2.
8) “Message to Moon Proves Atmosphere Penetration”, Electrical Engineering, March, 1946, pp 140-141,
The People of Project DIANA
LTC Dr John H. DeWitt, Jr. - Wikipedia link, Harvard link, Obituary, IEEE Member Directory 1996 Entry for John J DeWitt, Jr
Women's History in Engineering and Technology
Celebrating Our History: Inventing Your Future
IEEE Members, SWE Members, and the public were invited to a round table discussion with inspiring women engineers, followed by a reception and networking -- to hear a story and to share a story.
Women’s History Month provides an opportunity for us to celebrate those who have come before us and invented the world in which we live, and to consider the circumstances of their times. At the same time, the discussion encourages us to look forward to the opportunities engineering and professional societies provide for us to fully invent our own future and make an impact upon the world.
Featured Guests: Dr Kahina Lasfer, Dr Paula Muller, Dr Yingying Jennifer Chen, and LTC Dr Kathryn Kennedy Pegues.
Moderator: Dr Katherine Grace August
Several women Engineers and volunteers from the NJ Coast Section collaborated with the Stevens Institute of Technology Student Chapter, and the IEEE History Center to conduct the Event at the campus of Stevens Institute of Technology Lore-El Center during Women's History Month, 27 March 2019. The four IEEE Members were featured in a Round Table discussion including professional membership, mentoring, networking, inventing, and other important topics. Links to key information about the History of Women in Engineering and Technology, and related IEEE Member content is provided herein. The History of Women in Engineering and Technology is now a featured resource on this site connecting our New Jersey Coast Section Members and others with helpful and interesting content and Celebrating the History of Women in Engineering and Technology. We plan content to continue the discussion about Celebrating Our History: Inventing Your Future.
Dr Kahina Lasfer - Data and literature indicate women are at a disadvantage in the engineering field. This presentation will highlight my experiences that provided me more advantages than challenges as a minority female in the engineering workplace. My education and subsequent exposure to diverse and challenging projects provided me the opportunity to work with highly expert professional men including professors, thesis advisors, managers, mentors and co-workers. They were all very supportive in helping me advance in my career in spite of all the challenges that I had to face as a minority female engineer. Dr. Kahina Lasfer is a manager at MTA – New York City Transit, leading systems communications engineering projects through design and construction phases. She holds a PhD in Systems Engineering and a Master’s degree in Computer Engineering from Stevens Institute of Technology. She has over 15 years of experience working as a Software Engineer, Research Engineer, and Manager for Systems Communications Engineering in the railroad industry. Dr. Lasfer also holds a Professional Engineer (P.E.) certification.
Dr Paula Muller - Founder of Sociavi, has a lifelong passion for technology applied to healthcare, starting with her M.S. in Biomedical Engineering in Chile working with blind people, then her work in Switzerland analyzing EEGs to prevent epileptic attacks, followed by her Ph.D. and Post-doc work at Rutgers with Parkinson patients, and most recently at Authentidate with Telehealth products and services. Paula has a vast experience in technology and software development through her engineering positions at several ompanies like Sirus|XM satellite radio, Net-Scale Technologies and Authentidate, among others, and she has extensive management experience through senior positions at Net-Scale Technologies and Authentidate. The business idea for Sociavi evolved from her professional background as well as her strong commitment to family relations and lifetime connections. Thus SOCIAVI, coming from the latin word “share” and “unite”, was born with the goal of keeping seniors and their families closer together.
Dr Yingying Jennifer Chen - Yingying (Jennifer) Chen is a tenured Professor of Electrical and Computer Engineering at Rutgers University and the Associate Director of the Wireless Information Network Laboratory (WINLAB). She also leads the Data Analysis and Information Security Laboratory (DAISY). Her background is a combination of Computer Science, Computer Engineering and Physics. She has co-authored three books Securing Emerging Wireless Systems (Springer 2009) and Pervasive Wireless Environments: Detecting and Localizing User Spoofing (Springer 2014) and Sensing Vehicle Conditions for Detecting Driving Behaviors (Springer 2018), published over 150 journal articles and referred conference papers and obtained 8 patents. Her research has been licensed by multiple companies and reported in numerous media outlets including the Wall Street Journal, MIT Technology Review, CNN, Fox News Channel, IEEE Spectrum, Fortune, Inside Science, NPR, Tonight Show with Jay Leno and Voice of America TV.
LTC Dr Kathryn Kennedy-Pegues - An assistant professor in the Department of Systems Engineering, and Officer in Charge of the Women in Engineering Chapter at the United States Military Academy, West Point. Dr Pegues received her Ph.D. in Industrial Engineering from Clemson University, M.S. Operations Research and M.S. Applied Mathematics from the Naval Post Graduate School. She also serves on the advisory council of the West Point Association of Graduates, and as a volunteer for the West Point Admissions Department identifying and attracting women candidates to the USMA.

The Round Table Discussion Begins -- click for video.
Round Table Discussion Continues -- click for video.
Round Table Discussion Continues -- click for video.
Round Table Discussion Continues -- click for video.
Link to article from The Institute: IEEE Women in Engineering Committee Celebrates 20 Years [1]
o Charmain Williams, Sr Manager Women In Engineering Program: c.t.williams@ieee.org
o Paola Bringas, WIE program Coordinator: p.bringas@ieee.org
· Main Website for Info: wie.ieee.org
A Role Model and Mentor for our Speaker, Paula Mueller, PhD is Evangelia Micheli-Tzanakou see also IEEE Innovators Archive
Link to Women in Engineering Awards
Link to List of Topics Related to Women
Link to Who Becomes an Inventor in America? The Importance of Exposure to Innovation The Quarterly Journal of Economics, qjy028, https://doi.org/10.1093/qje/qjy028, Published: 29 November 2018
Interesting Women Engineers
Erna Schneider Hoover -- Bell Labs, career, inventor, Wikipedia link
Milestones
New Jersey Coast Milestones
Proposed Milestone
An upcoming Milestone is proposed for the Horn Antenna at Crawford Hill in Holmdel New Jersey. The Horn Antenna is of historic significance. First constructed for Project Echo, then extended to Telstar, and later significance for the 1964 discovery of the Cosmic Background Radiation of the Formation of the Universe, the Big Bang covering dates from 1959 through 1965. For more information including the official records associated with the Milestone application, please see: https://ieeemilestones.ethw.org/Milestone-Proposal:Project_Echo
At the moment, the text of the Milestone reads: Project Echo 1959 - 1965; with a proposed Plaque citation summarizing the achievement and its significance:
Title of the proposed milestone: Project Echo, Telstar, and the 1964 discovery of the Cosmic Background Radiation of the Formation of the Universe, the Big Bang 1959 - 1965
Plaque citation summarizing the achievement and its significance: Project Echo (1959 – 1961) constructed a long-distance wireless communication system in Holmdel New Jersey: a novel tracking horn-reflector antenna, maser preamplifier, and FM demodulator. This low noise receiver provided the first high-quality long-distance voice circuit via passive satellite. Capabilities expanded (1962 – 1963) with Telstar active satellite transmissions through the invention of solar cells. Experiments (1964) led to discovery of cosmic background radiation, verifying the Big Bang formation of the Universe.
200-250 word abstract: There is no single event more transformative in the second half of the twentieth century than the discovery of the cosmic background radiation, verifying the Big Bang Theory, which described the formation of the Universe. Behind that discovery is a unique horn-antenna constructed on Crawford Hill at Holmdel New Jersey. The sophisticated functionality of the Horn Antenna was designed and developed in phases, resulting in a sensitive antenna capable of detecting cosmic background radiation, which was interpreted as the signature of the Big Bang. First Project Echo (1959 – 1961) constructed a long-distance wireless communication system which included a novel tracking horn-reflector antenna, a maser preamplifier, and an FM (Frequency Modulated) demodulator. This low noise receiver was the first to provide a high-quality long distance voice circuit via the Echo 1 passive satellite. The system capabilities were later expanded (1962 – 1963) with transmissions to the Telstar active satellite made possible by the invention of the solar cell. Further experiments (1964) led to the discovery of the cosmic background radiation, verifying the Big Bang Theory which describes the formation of the Universe.
These discoveries mentioned and directly connected with the unique antenna represent the intersection and advancement of several scientific, engineering, computational, philosophical, and cultural fields of study critically important for all of humanity. On this site, and through this Milestone, we recognize the advancement of all those fundamental constructs of our worldview.
With the placement of this IEEE Milestone at the AT&T Labs Science & Technology Innovation Center and Museum, we will find a secure dignified location. The facility was designed, developed, documented and is staffed with expert Docents who are themselves accomplished Researchers. Many of them have worked with the Horn Antenna, and or with people who built or used the Horn Antenna for their work. This location is filled with artifacts and history. There are other IEEE Milestones at the location. Displays and interactive media represent the milestones and researchers who participated in the antenna and related systems design, development, operation, interpretation, and sharing the revolutionary discoveries that shaped our modern world of satellite, space communications, our understanding of ourselves, and the Big Bang Theory origins of the Universe in which we live.
- YouTube Playlist about the Horn Antenna: Videos.
- Interview with Dr Robert Wilson at Bell Works: September 2022 video.
- Project Echo, Telstar, and the 1964 discovery of the Cosmic Background Radiation of the Formation of the Universe, the Big Bang 1959 - 1965.
- Please see the video "Foundations of the Information Age: Communications Satellites (Bonus Edition)."
- Please see the video about Telstar "The Far Sound."
- Please see the video interview with Arno Penzias, PhD and Robert Wilson, PhD about their Nobel Prize.
Section Milestones
- American Standard Code for Information Interchange ASCII, 1963, 1963, 19 May 2016, Region 1 New Jersey Coast Section 164
- Trans-Atlantic Telephone Fiber-optic Submarine Cable (TAT-8) - 1988, 1988, 19 May 2016, Region 1 New Jersey Coast Section 165
- Detection of Radar Signals Reflected from the Moon, 1946 (Also Known As Project DIANA) 17 May 2019 Colts Neck Inn and 18 May 2019 at the Historic Museum and original site, InfoAge TIROS location, Region 1 New Jersey Coast Section. Click here for the InfoAge Website and more information.
Location of the Milestone is ISEC. Click here for more information and the ISEC web site.
Very interesting IEEE History link: Spaceflight in Silent Film
Related Milestones in other Sections
- Bell Telephone Laboratories, Inc., 1925-1983, 1925, 18 December 2014, Region 1, North Jersey Section 151
- Interesting link about Digital Music from the Bell Telephone Laboratories Milestone: Music N Max Vernon Mathews USA 1957.
Region Milestones
Click on the little up or down arrows at the top of each column to sort by the category you wish to see.
New Jersey Coast Visits with Victor Lawrence, PhD IEEE Life Fellow -- History and Topics of Interest
2021 February 25 -- Victor B Lawrence, PhD IEEE Life Fellow session on Black History Month Celebrating Our History Inventing Our Future.
Professor Dr Lawrence covers a variety of topics including a History and impact of Black Inventors that will only scratch the surface. This is a very important topic and we aspire to expound here to Celebrate Our History and we are optimistic to contribute to many efforts to fill in the pieces, and to make a significant and meaningful to the future -- Inventing Our Future.
To view the video, please select this link: Black History Month Meeting and Patent Innovations.
Let's begin a dialog to increase the resources herein to the ongoing celebration and recognition, and share methods to increase access, opportunities and realization for the future.
Dialog introduces a range of topics including but not limited to methods of increasing opportunities not only in early education, in university and graduate school, post doc, in careers, in recognition, in Membership organizations including IEEE, and more.
Some information resources. To our readers and community, please suggest additions:
The United States Patent and Trademark Office program SUCCESS Act.
https://www.uspto.gov/sites/default/files/documents/USPTOSuccessAct.pdf
The front cover of this report highlights a few notable inventors and their patents who are represented in this report.
• James E. West (U.S. Patent No. 3,118,022 for electret microphone)
• Ellen Ochoa (U.S. Patent No. 4,838,644 for optical systems for performing information processing)
• Marian Rogers Croak (U.S. Patent No. 7,715,368 for text-to-donate technology)
• Rory Cooper (U.S. Patent No. 9,254,234 for robotic strong arm)
• Frances Arnold (U.S. Patent No. 6,153,410 for directed evolution of enzymes)
Thank you to the National Inventors Hall of Fame, NASA, U.S. Department of Veterans Affairs, and Marian Rogers Croak for the use of these images. Learn more at www.invent.org, www.nasa.gov, www.herl.pitt.edu, and www.witi.com.
Lemelson Center Black Inventors and Innovators: New Persepectives.
Some Black Inventors. To our readers and community, please suggest additions:
Dr James Edward Maceo West (to the Wikipedia page), Dr James E. West (to the IEEE History Wiki) of Bell Labs as discussed in a recent Hackaday feature (for 40 years) and Johns Hopkins, and his many contributions include over 40 U.S. patents and 200 international including the U.S. Patent No. 3,118,022 for electret microphone.
Marian Rogers Croak Vice President of Engineering at Google, previously Senior Vice President of Research and Development at AT&T Labs. Developer of Voice over IP creating most of the methods and features that improved reliability and universal adoption. Inventions include U.S. Patent No. 7,715,368 for text-to-donate technology. A Keynote at the 5G Summit by Marian Croak from IEEE TV is linked here.
Dr Patricia Bath (to the Wikipedia page) and her revolutionary contribution to cataract surgery including content from the Lemelson Center for the Study of Invention and Innovation Dr Patricia Bath website.
2020
A very popular presentation by Herwig Kogelnik, PhD IEEE Life Fellow covers interesting topics of History that took place right at the New Jersey Shore in 'Making Waves - Genius at the Jersey Shore.' Herwig covers the early days of the Bell Labs Holmdel and Crawford Hill locations with interesting highlights, pictures, and landmark achievements. It is easy to see why the presentation is so popular. Many key figures including Karl Jansky, Arno Penzias, and Bob Wilson are discussed. Landmarks in Radio Astronomy, Wireless, and Communications are covered.
Trip to Molnarville, New Jersey, a Visit with Victor B. Lawrence March 2019 to discuss Radio History, Professor Dr Louis A Hazeltine, Neutrodyne, and many other items. Including various items of text, videos, and photos by K.G. August, PhD. Video camera paid for by a grant from IEEE USA with funds donated by IEEE Members.
New IEEE Milestone Neutrodyne Inspires Humanitarian Activities - Collaboration with North Jersey and Stevens Institute of Technology Student Chapter
Click for IEEE Futurecast Milestone Neutrodyne Video
by Katherine Grace August, PhD
IEEE History Inspires Humanitarian Activities - As we have learned from a role model in the chapters of IEEE History, Professor Louis A Hazeltine of Stevens Institute of Technology, and his Team who in 1922 developed the Neutrodyne Circuit, it is possible to advance technology for humanity, and to transform the world in which we live by making engineering decisions to benefit humans. The Neutrodyne circuit simplified radio tuning eliminating parasitic oscillation, that terrible squealing and unstable tuning. Because the Hazeltine Team licensed twenty manufacturers, together they were successful in changing the business model for radio. The field was previously monopolized by RCA and their Proprietary solutions for the RCA Super Heterodyne Circuit, Armstrong's solution. At that time, radios were prohibitively expensive, made for the wealthy. By producing ten million Neutrodynes in about three years, Professor Hazeltine’s Team and licensees rapidly expanded the population of people who had access to radios.
*Update in the time of COVID-19: we recognize now broadly in society how much the digital divide creates disparity, at heavy human cost. IEEE fosters advancing technology for humanity, to reduce suffering, reduce disparity, to follow United Nations Sustainable Development Goals. Professor Louis A Hazeltine and his team were role models and made a true humanitarian difference with their advancement in technology.*)
Even people on farms and in the mountains could now own a radio. They no longer had to wait for news, to wait to hear what was happening in the towns, and cities, in the Nation’s Capital of Washington DC, across Europe and around the globe. Every person was able to hear the sound bites and make informed decisions when they voted. Even if they could not read, they could gather information and learn. People had wide access to a unifying and common language and vocabulary. Ordinary people could engage in leisure activities listening to music and cultural programming anywhere in the country. Even in the most remote places. People everywhere could actively participate in Democracy.
Caption: Professor Hazeltine, the Neutrodyne Circuit, Stevens Campus - Navy Building
Prior to the commercial development and distribution of the Neutrodyne circuit, only wealthy people with a high level of skill could own and operate radio receivers. Because of the insight and experience Professor Hazeltine had working with the Navy, he keenly recognized the humanity involved in the situation. Every person’s life is valuable. He recognized it was not only the engineering, but also the business model that created disparity – that created a gap between people who have access and those who do not.
Access to technology means life or death, participation in the important aspects of opportunities in our society, in the economy, in education, healthcare, or in the alternative – to experience disparity. He recognized that an expensive solution would necessarily create and attenuate a gulf between humans who can participate, and those who are left out forever because opportunity is passed along to the family, shared by the community, and then to the next generations.
Caption: Professor Hazeltine Notebooks, Neutrodyne Logo
When Professor Hazeltine embraced a low cost simplified solution, and licensed it making it widely available at a rapid pace, he was a great steward and a role model for the rest of us to use our engineering skills to address the needs of our society and to do it at a lower cost and to do it with a goal – to create a much greater impact, to reduce suffering and to improve opportunity for society.
And Professor Hazeltine illustrated the significance of engineering decisions in transforming opportunities for humans everywhere. Millions of people’s lives were changed and our society was transformed by the remarkable achievements of the Neutrodyne Team. They created mass communication with its vast and immeasurable benefits, and all that enables.
Today, we cannot imagine our world without mass communication. We admire the achievements of the Neutrodyne Team and take notice of the opportunity we have today to make a difference by advancing technology for humanity, by providing lower cost solutions that have a wider impact on society: advance technology for humanity in our community and around the globe.
Within three years of introducing the Neutrodyne, radio ownership grew from 10 percent to 60 percent of the population of North America ushering in Mass Communication that Democratized Politics and forever changed the way people access information, news, music and culture with lasting effects evident in our everyday lives. Even today, we can step up to the challenge and advance technology for humanity, making decisions every day to engineer with a heart. Advancing technology for humanity for the benefit of all the far reaches of the globe, and for our fellow human beings in our own communities.
In the IEEE NJ Coast Section, with our Humanitarian Activities, and our NJ Coast Section SIGHT Group we are very aware of and inspired by the parallels between the legacy of the Neutrodyne and the opportunities for improving technology in our environment today. We are inspired to make excellent engineering decisions for the benefit of humanity – for those with hearing loss, to heal diseases, educate, improve job safety, and to deal with other fundamental needs that must be solved in order to bridge the gap, reduce disparity, welcome humans everywhere to be full participants in society, the economy, in their own lives and in the lives of their families.
In our Humanitarian Activities, Hear, here! we hold as a goal to facilitate providing at least one viable low-cost solution accessible to everyone by promoting IEEE Standards to reduce the impact of proprietary solutions, just as Neutrodyne did in their day. Proprietary solutions in the case of hearing assistance keep technology solutions from helping the people who need them most – people who need to have lower cost access to technology so they can participate fully. There is a vast opportunity for technology to be helpful, since only about 10 percent of the hearing aids needed are produced. In 2020, FDA will allow hearing assistance that doesn’t require prescriptions making this an ideal time to offer new solutions. It is up to us to understand and use our skills to reduce disparities wherever we find them.
We set our goals high and we invite you to join. We aim to raise awareness, capture and share the Stories, be Connectors, and transform opportunities on campuses, in organizations, with company solutions, and to model and inspire others to use our engineering skills to advance technology for humanity in our community and around the globe. That is our model to meet the United Nations Sustainable Development Goals.
Interview with Professor Dr Don Heirman, 2018 IEEE Richard M. Emberson Award Winner, IEEE Life Fellow and Member of the New Jersey Coast Section -- History in Hearing Aids, Electromagnetic Compatibility, T-Coil Technologies, Mobile Phones, etc.
Professor Dr Don Heirman, IEEE Life Fellow, Founding Member of the EMC Society, and Member of our New Jersey Coast Section shares a wealth of the History in Electromagnetic Compatibility of Hearing Aids and T-Coil Technologies. In a recent interview, Don describes his background, History of Electromagnetic Compatibility, and his own personal experiences with Hearing Aids. Interview, photos, and videos by K.G. August, PhD, (IEEE NJ Coast Section, PACE, AP/EMC/VT, SIGHT Group -- Justice for All project).
Don Heirman's personal history and contributions to IEEE EMC remembered.
Don Heirman's interview when he describes his background and early work. Click link for the YouTube Video.
Don Heirman's interview continues with EMC analysis of medical devices, phones, etc. Click link for the YouTube Video.
Don Heirman's interview continues with his own experience with Hearing Aids. Click link for the YouTube Video.
Don Heirman's interview continues. Click link for the YouTube Video.
Don Heirman's interview continues. Standards. Click link for the YouTube Video.
Don Heirman's interview continues compatibility, interoperability, what about the future of standards. Click link for the YouTube Video.
Major IEEE Award Winners from New Jersey Coast Section
IEEE Medal of Honor: Harald T. Friis, 1955; George C. Southworth, 1963; Rudolf Kompfner, 1973;C. Kumar Patel (C. K. N. Patel), 1989; Alfred Y. Cho, 1994; Herwig Kogelnik, 2001; Gerard J. Foschini (Jerry), 2008
IEEE Alexander Graham Bell Medal: Amos E. Joel, Jr.; William Keister; Raymond W. Ketchledge, 1976; Gerard J. Foschini (Jerry), 2008
IEEE Edison Medal: John R. Pierce, 1963; C. Chapin Cutler, 1981
IEEE Simon Ramo Medal: Victor B. Lawrence, 2007
IEEE Award in International Communication: Eugene O'Neill (E. F. O'Neill), 1971; Victor B. Lawrence, 2004
Harry Diamond Memorial Award: Marcel J. E. Golay, 1951; Harold A. Zahl, 1954; Georg Goubau, 1957; Helmut L. Brueckmann, 1961; John J. Egli, 1966; Harold Jacobs, 1973
IEEE Mervin J. Kelly Award: Harald T. Friis (H. T. Friis), 1964
IEEE Morris N. Liebmann Memorial Award: Harald T. Friis (H. T. Friis), 1939; J. A. Pierce, 1953; Stewart E. Miller, 1972; Willard S. Boyle, 1974; Alfred Y. Cho
IEEE David Sarnoff Award: Rudolf Kompfner (Rudi), 1960; B. C. DeLoach Jr., 1975; H. E. Rowe, 1977; J. M. Manley, 1977; A. G. Fox, 1979; Tingye Li, 1979
Browder J. Thompson Memorial Prize Award: A. W. Randals, 1950; Arthur Karp, 1958
IEEE Eric E. Sumner Award: Debasis Mitra, 1998; Gerard J. Foschini (Jerry), 2004; Krishnan Sabnani, 2005; Reinaldo A. Valenzuela, 2010; Jack H. Winters, 2012
IEEE Lamme Medal: C. Kumar Patel (C. K. N. Patel), 1976
IEEE Richard M. Emberson Award: Don Heirman, 2018
IEEE Edison Medal – Ursula Keller, 2019 for a career of meritorious achievement in electrical science, electrical engineering or the electrical arts,sponsored bySamsung Electronics Co., Ltd.,to Recipient URSULA KELLER (FIEEE) — Director of NCCR MUST (Swiss National Centre of Competence for Research in Molecular Ultrafast Science and Technology)—ETH Zurich, Zurich, Switzerland Citation "For pioneering and fundamental contributions to and leadership in useable, compact ultrafast laser technology, enabling applications in metrology, sensing, and biophotonics.”
For biographies of the award winners see the further reading section below and click to open the IEEE New Jersey Coast Section Centennial Journal.
Major non-IEEE Award Winners from New Jersey Coast Section
Radio Club of America (RCA) The Vivian A. Carr Awards: Margaret Lyons, in recognition of an outstanding woman’s achievements in the wireless industry, 2019.
Nobel Prize - Arthur Ashkin, 2018
Link to IEEE Spectrum article on this Nobel Prize
IEEE New Jersey Coast Section celebrates Dr Arthur Ashkin's Nobel Prize.
Thomas Alva Edison Patent Award - Gerard J. Foschini (Jerry), 2002
Nobel Prize - Robert Wilson, 1978
Nobel Prize - Arno A. Penzias, 1978
Henry Draper Medal - Robert Wilson, 1977
IRE Medal of Honor, Valdemar Poulsen Medal of the Danish Academy of Sciences, Ballentine Medal from the Franklin Institute - Harald T. Friis
Prominent Members
- Howard E. Michel, IEEE President and CEO, Since joining IEEE more than four decades ago, Howard has held a variety of leadership positions, including Vice President of Member and Geographic Activities (MGA), where he led efforts to enhance IEEE’s member and volunteer communities.
- Karl Guthe Jansky - Father of Radio Astronomy, "Making Waves: Genius At the Jersey Shore", presentation by Herwig Kogelnik
Section Officers
Current section officers:
Chair: Filomena Citarella
Vice Chair: Ali Daneshmand
Treasurer: Michael Sosa
Secretary: Fatimah Shehadeh Grant
Prior section officers:
Irfan Lateef, PhD
Ajit Reddy
Filomena Citarella
Claude Martell
- Chair: Dr R. Wyndrum
- Vice-chair: Dr N. Wilson
- Secretary: H. Kradjel
- Treasurer: Dr R. Ting
Past NJ Coast Section Officers
2004 - 2007 Chair Bala Prasanna; Vice Chair Dr Ming Yu; Secretary Bin Yao; Treasurer Dr Rulei Ting
Chair | Vice chair | Secretary | Treasurer | "Scanner" Editors | Year |
---|---|---|---|---|---|
Irfan Lateef | John J Deltuvia | Filomena Citarella | 2021 | ||
Irfan Lateef | Ajit Reddy | Claude Martell | Filomena Citarella | 2020 | |
Irfan Lateef | Ajit Reddy | Claude Martell | Filomena Citarella | 2019 | |
Irfan Lateef | Ajit Reddy | Claude Martell | Filomena Citarella | 2018 | |
Adriaan Van Wijngaarden | Margaret Lyons | Thomas Perkins | Santo Mazzola | 2017 | |
Newman Wilson | Margaret Lyons | Eamon Wall | Rulei Ting | 2016 | |
Ralph Wyndrum | Newman Wilson | Howard Kradjel | Rulei Ting | 2015 | |
Ralph Wyndrum | Newman Wilson | Frank Laslo | Rulei Ting | 2014 | |
K Raghunandan | Ralph Wyndrum | Frank Laslo | Rulei Ting | 2013 | |
K Raghunandan | Ralph Wyndrum | Frank Laslo | Rulei Ting | 2012 | |
T K Srinivas | K Raghunandan | Frank Laslo | Rulei Ting | 2011 | |
T K Srinivas | Wei Su / John Palfranan | K Raghunandan | Rulei Ting | 2010 | |
T K Srinivas | Wei Su | K Raghunandan | Rulei Ting | 2009 | |
T K Srinivas | Wei Su | K Raghunandan | Rulei Ting | 2008 | |
Bala Prasanna | Amruthur Narasimhan | Dru Reynolds | Rulei Ting | 2007 | |
Bala Prasanna | Ming Yu | Robin Ying | Rulei Ting | 2006 | |
Bala Prasanna | Ming Yu | Robin Ying | Rulei Ting | 2005 | |
Bala Prasanna | Ming Yu | Bin Xie | Rulei Ting | 2004 | |
Bala Prasanna | Ming Yu | Bin Xie | Rulei Ting | 2003 | |
Amruthur Narasimhan | Irfan Lateef | Ming Yu | Rulei Ting | 2002 | |
Amruthur Narasimhan | Irfan Lateef | Ming Yu | Rulei Ting | 2001 | |
Amruthur Narasimhan | Bala S. Prasanna | Ming Yu | Rulei Ting | Jose R. Bonilha | 1999-2000 |
Amruthur Narasimhan | Bala S. Prasanna | Ming Yu | Rulei Ting | George G. McBride | 1998-99 |
Amruthur Narasimhan | Kazem Sohraby | Ajay K. Jain | Alexander D. Walter | George G. McBride | 1997-98 |
Krishnamurthy Raghunandan | Kazem Sohraby | Mojtaba Shariat | Alexander D. Walter | vacant | 1996-97 |
William D. Wilber | Kazem Sohraby | Jagadeesh Pamulapati | Alexander D. Walter | George G. McBride | 1995-96 |
George G. McBride | Alireza Mahmoodshahi | Kazem Sohraby | William D. Wilber | Jaime R. Tormos | 1994-95 |
Umesh J. Amin | George G. McBride | Sub Krishnamurthy | William D. Wilber | Jaime R. Tormos | 1993-94 |
Timothy J. Rooney | Umesh J. Amin | Richard Seyfert, Jr. | William D. Wilber | Jaime R. Tormos | 1992-93 |
Erwin E. Muller | Timothy J. Rooney | Richard Seyfert, Jr. | William D. Wilber | Jaime R. Tormos | 1991-92 |
Gary L. McElvany | Erwin E. Muller | Richard Seyfert, Jr. | Alireza Afrashteh | Jaime R. Tormos | 1990-91 |
Meredith Gee | Gary L. McElvany | Richard Seyfert, Jr. | Timothy J. Rooney | Umesh J. Amin | 1989-90 |
R.L. Ross | Meredith Gee | Gary L. McElvany | Timothy J. Roony | Umesh J. Amin | 1988-89 |
Karen A. Perry | R.L. Ross | Meredith Gee | Christine A. Heaney | Timothy J. Rooney | 1987-88 |
Debora A. Berberian | Karen N. Archer | Meredith Gee | David G. Shaw | Gary C. Smith | 1986-87 |
David R. Gunderson | Debora A. Berberian | Larry Bulanda | Karen N. Archer | David G. Shaw | 1985-86 |
Mari Campanella | John R. Baechle | Debora A. Berberian | You-Hsin E. Yen | Kwang S. Park | 1984-85 |
David B. Usechak | Michael J. McMahon | David R. Gunderson | Derek S. Morris | Debora A. Berberian | 1983-84 |
Don N. Heirman | David B. Usechak | Joseph G. Kneuer | Michael J. McMahon | Pat Trischitta | 1982-83 |
Joseph A. Keilin | Don N. Heirman | Mary Ellen McNamara | David B. Usechak | Mike McMahon | 1981-82 |
Miguel A. Carrio | Joseph Keilin | Don N. Heirman | Mary Ellen McNamara | Joseph G. Kneuer | 1980-81 |
Joseph Chislow | Miguel A. Carrio | Joseph Keilin | Howard Wichansky | Don Heirman | 1979-80 |
Sidney Marshall | Joseph Chislow | Miguel A. Carrio | Joseph Keilin | Nicholas LaRocca | 1978-79 |
V. Ramu Ramaswamy | Sidney Marshall | Joseph Chislow | Miguel A. Carrio | Seungtaik | 1977-78 |
David Haratz | V. Ramaswamy | Sidney Marshall | R.L. Maybach | William Montgomery | 1976-77 |
Victor Ransom | David Haratz | V. Ramaswamy | W. B. Glendinning | Joseph Keilin | 1975-76 |
Bruce C. Miller | Victor Ransom | David Haratz | V. Ramaswamy | William Stirrat | 1974-75 |
Vasant K. Prabhu | Bruce C. Miller | Victor Ransom | David Haratz | J. Gielchinsky | 1973-74 |
Seymour Krevsky | Vasant K. Prabhu | Bruce C. Miller | Victor Ransom | Ramu Ramaswamy | 1972-73 |
Detlef C. Gloge | Seymour Krevsky | Vasant K. Prabhu | Bruce C. Miller | Salomon Lederman | 1971-72 |
Anthony J. Kazules | Detlef C. Gloge | Seymour Krevsky | Vasant K. Prabhu | John A. Soboleski | 1970-71 |
Martin V. Schneider | Anthony J. Kazules | Detlef C. Gloge | Seymour Krevsky | John F. Prorok | 1969-70 |
John J. O'Neil | Martin V. Schneider | Anthony J. Kazules | D. Gloge | Bruce C. Miller | 1968-69 |
Louis H. Enloe | John J. O'Neil | Martin V. Schneider | Anthony J. Kazules | Warren Kesselman | 1967-68 |
Robert Roullette | Louis H. Enloe | John J. O'Neil | Martin V. Schneider | Martin V. Schneider | 1966-67 |
Herbert S. Bennett | Robert Roullette | L. H. Enloe | John J. O'Neil | John J. O'Neil | 1965-66 |
Herbert S. Bennett was the first NJ Coast Chairman.
Past Chairmen | Past "Scanner" Editors | Dates |
David C. Hogg | 1964-65 | |
Irving Reingold/ Nathan Lipetz | 1960-61 | |
Arthur H. Ross | 1956-57 | |
George F. Senn | 1955-56 | |
William M. Goodall | Carl A. Borgeson | 1954-55 |
O. D. Perkins | 1953-54 | |
Sloan D. Robertson | Archie P. King | 1952-53 |
The first issue of the New Jersey Coast Section newsletter "Scanner" was printed on September 1950.
Archival documents
- Section petition documents
- IEEE New Jersey Coast Section Newsletter Jan/Feb 2010
- IEEE New Jersey Coast Section Centennial Journal Part 1
- IEEE New Jersey Coast Section Centennial Journal Part 2
- IEEE NJ Coast Section Talk Description Oct. 2006
- IEEE Geographic Organizing Document - New Jersey Coast Section
- IEEE New Jersey Coast Section Awards Banquet 7 June 2018 Program
Humanitarian Activities and Related History
(Including links to IEEE content, USPTO content, and some text, photos, and media by K.G. August, PhD.)
IEEE NJ Coast Section Humanitarian PACE SIGHT Group update January 2023
Our IEEE HAC SIGHT funded project, Do Good Things: Health and Justice for All Health and Health Device Literacy evolved and adapted to meet the needs of our stakeholders, volunteers, members, and the community during a very turbulent time in history. COVID-19, a global pandemic, challenged every aspect of life and wellbeing on the planet. Our project aimed to help people bridge the digital divide through learning about health homeostasis and simple health devices. To view an overview of the project and IEEE NJ Coast PACE SIGHT Group activities see the Summary on our Playlist. One of the key devices we addressed was the blood pressure cuff as well as related lifelong cardiovascular health issues. An important aspect of health and health device literacy is to address culturally and linguistically appropriate systems. We established a project to engage the community in creating brief videos to improve understanding of cardiovascular health and also to learn how to use the blood pressure cuff. Our student volunteer from the local section who is also a volunteer with the local ambulance corps created a learning script. We asked participants to translate the script into the languages spoken in their homes. We asked them to create a video and we continue to add more videos to our collection. We invite everyone to participate in this project and to share the videos to improve health and health device literacy locally and globally. Please see the Health and Medical Device Literacy Playlist at this link.
During our recent IEEE HAC SIGHT funded project we participated in the IEEE ComSoc STEM competition and created a video slideshow to illustrate our activities. You may view the video in our YouTube Channel Playlist and by linking here: IEEE NJ Coast PACE SIGHT Group ComSoc STEM competition video.
IEEE MGA Friend of NJ Coast Section The Honorable Dr Duncan Rogers Lee, II Esq. 2022
In December 2022, our Humanitarian community collaborator The Honorable Dr Duncan Rogers Lee, II Esq. who is coach of the Nyack Mock Trial Team received the MGA Friend of IEEE NJ Coast Section Award. His collaboration allowed us to engage with various organizations in the Justice System, multiple Bar Associations, the Rockland County Clerk, the Rockland County Court, various municipal courts, Judges, attorneys, court staff, Nyack High School Mock Trial Team Members, local, county, and State competitions, and Moot Court. We were able to investigate issues around hearing loss and other disabling conditions in the interactions with the Justice System and impact upon individuals, families, and society.
Students from the Nyack Mock Trial Team created a video to explain some of the issues associated with hearing loss in the Justice System and how important Accessibility is to improve outcomes for individuals, families, and society.
We pivoted during COVID-19 to virtual meetings enabling more IEEE Members to take part. Students engaged in topics involving impact of disabling conditions, opportunities for mainstream technologies including captioning to improve speech understanding in the Justice System.

Dr Lee introduced us to various members of the legal community who shared their experiences and helped us shape our SIGHT Group goals including real time and video captioning, Experiential Learning System, (Demo of hearing loss Experiential Learning System), and more. Dr Lee also has an extensive history of teaching physics in an engineering model. He is a leader, role model, and inspiration to all. We are most grateful.
IEEE NJ Coast PACE SIGHT Group Health and Medical Device Literacy Project 2022
Updates December 2022 - Recent IEEE NJ Coast PACE SIGHT Group project Health and Medical Device Literacy faced challenges unmasked during the COVID-19 global pandemic emergency that transformed our society elevating the digital divide to shocking levels.
People are required to help themselves, their family members and loved ones with simple medical devices in their homes, often using telehealth or without any assistance. Our team addressed these needs with our Humanitarian Activities Committee SIGHT project, sharing our activities with the team, with community members, online, at schools, etc.
We also engaged with IEEE TryEngineering for a Summer Camp with additional support from Region 1 PACE, and the NJ Coast Computer Chapter, at the local school district of Toms River.
Our inspiring Student Volunteer Leader created an excellent script and video which was replicated by additional students and volunteers in multiple languages. This demonstrated how helpful stakeholder involvement is for our Humanitarian projects. The focus of this exercise included understanding Culturally and Linguistically Appropriate Systems (CLAS-HHS) which is important in improving literacy.
Our communities are diverse with many students in local schools living in multilingual households. In our first survey, 99 students participated in the program, 79 replied to the survey, 49 lived in multiple language households involving 19 languages.
We learned that even Spanish translations might not be sufficient to help people understand health and medical information especially critical during the COVID-19 emergency when people care for themselves and families, and use telehealth and other forms of medical care.
We also gave an informative presentation at the Rotary Club, and in Region 1.
We leveraged the project with our IEEE Standards Association (SA) Dignity, Inclusion, Identity, Trust, Agency (DIITA) activities in our Workflow: Transparent Design for Wellbeing and Accessibility in Technology for a new Standard PAR 3337 Project Title: Standard for Intelligent Power, Security, Connectivity (IPSC) for Wellness and Accessibility.
Our videos include the Health and Medical Device Literacy Sessions including Blood Pressure, various student created videos in multiple languages, Special Seminars including by Paula Muller, PhD on Aging Well and design of interface to improve outcomes, meet needs of the individuals, and to reduce loneliness, team meetings, and more.
There are several videos created by Members, Students, and Volunteers in a variety of languages. Please consider submitting a video in your language, too. Please select the highlighted Language to view the video or go directly to our Health and Medical Device Literacy Playlist in YouTube:
American English: What is Blood Pressure?
UK English: What is Blood Pressure?
Tamil: What is Blood Pressure?
Spanish: What is Blood Pressure?
Portuguese: What is Blood Pressure?
Mandarin: What is Blood Pressure?
Hindi: What is Blood Pressure?
Polish: What is Blood Pressure?
Update October 2019 - Recently, the IEEE NJ Coast Section SIGHT project Hear, here! was selected as one of the five finalists in the University of Maryland Do Good Institute - Do Good Robotics Competition. Team members were invited to Maryland to attend the event and participate in a final Competition. Being among the five finalists with our Here, here! project raised awareness of the issues facing those with hearing loss, demonstrated our commitment to Humanitarian Activities, and resulted in great networking opportunities that will have a lasting impact on our SIGHT and Humanitarian Activities.
Then we were invited to attend a Humanitarian Conference Impact.Engineered at NYU Tandem School of Engineering in Brooklyn co-sponsored by ASME, IEEE, and many other organizations. We were able to use our Captioning app to improve speech intelligibility providing ad hoc accommodation during the conference. Many people became aware of the importance of providing accommodation for those with hearing loss and members of our team learned a lot about the Humanitarian Activities community locally and globally.
Previous:
IEEE Humanitarian Activities Committee and IEEE-USA through Member funding for IEEE PACE, and IEEE NJ Coast Section SIGHT Group for the 'Hear, here! Justice for All' project and Event. The Storytelling Contest submission by the Nyack Mock Trial Team may be viewed at the following link: Nyack Mock Trial Team Storytelling Video.
IEEE and our Members have a long History of involvement in Humanitarian Activities. Many of our Section Members are experienced in Communications, Acoustics, Speech Processing, etc. which relates directly to the topics we address in our Humanitarian Activities. In addition, our IEEE and Communications Technologies History relates to Alexander Graham Bell (a founder of the organization that became IEEE), AT&T, Bell Labs, the Communications Industry, and related topics. Alexander Graham Bell's research organization became what we know of as Bell Labs. In addition, the telephone pioneers of America had a tradition of helping those in need.
Alexander Graham Bell (known as Alec) himself devoted much of his time and effort to Humanitarian Activities including within his profession as a linguist and teacher of the deaf, and through a variety of activities associated with developing techniques and technologies to improve communication. Alec's father-in-law was a very influential person Gardiner Greene Hubbard who financed many of Alec's early efforts in experimentation and technology development. Alec's wife Mabel Gardiner Hubbard Bell, who has been named a Person of National Historic Significance in Canada and who was herself deaf, was one of the first presidents of the early Bell Telephone Company; together the couple held salons, innovated in various fields including flight, founded organizations, and invested in many companies and activities to benefit humanity and further innovation.
We in our Section have become involved with Humanitarian Activities and we have set out a plan and established a new IEEE Special Interest Group for Humanitarian Technologies (SIGHT) Group in the NJ Coast Section. More than ever, access to communication promotes engagement in the economy, education, healthcare, employment, and well being. Humanitarian Activities utilizing our special skills as engineers positions us well to enable interoperable, open source, low cost, networked solutions that engage everyone bridging the gap rather than attenuating disparities of proprietary expensive solutions.
Our first endeavors have been to investigate communication, hearing, and the acoustic scene. This project fits very well into the technical interests and Societies represented in our Section. We conducted an IEEE PACE project in order to develop a wider effort, learn more about Humanitarian Activities, the United Nations Sustainable Development Goals, and form the IEEE SIGHT Group.

The recent and ongoing IEEE PACE project: Hear, Here! Justice for All, a Humanitarian Activities Project (HAC), endeavors to understand and raise awareness about how Hearing Loss and related technology, legislation, and social issues, plays a role and impacts people in our Society. In this case, we are investigating the Justice System with a project and event. We have the help of Community, Shareholders, Students, Volunteers, who are IEEE Members and Non-Members. Our upcoming project and event will investigate and raise awareness about how hearing and communication impacts those who are aging and impact on social isolation, depression, health, and dementia.
We establish a goal to move the needle on the United Nations Sustainable Development Goals: 4, quality education, 5 equality for women and girls. 10 reduced inequalities, and 16 peace justice and strong institutions. As members of the largest professional organization for engineers, we can improve access for women and girls and set our SIGHTs on several new initiatives including exploring possibilities for new types of Distinguished Lecturers, supporting conferences and meetings with role model girls and women, documenting and sharing girl's and women's history, promoting innovation and invention by girls and women, and more.
Building on the History of Alexander Graham Bell as a teacher of the deaf, a linguist, humanitarian, social advocate, and technologist, we have collaborated with a Mock Trial Team to understand how the special circumstances of the Justice System and Aging can result in disparity for those with Hearing Loss, to raise awareness, and to propose potential ways to improve the situation.
Hear, Here! Justice for All Videos
We extend our initial efforts to include special populations including those who are aging. Approximately one third of those over 65 have hearing loss. We will collaborate with Sociavi and Paula Muller, PhD to promote Captioning to improve Speech understanding and improved communication.
We extend our efforts to include special populations including Veterans and Military who suffer hearing loss at unprecedented rates. Our colleague LTC Kathryn Kennedy-Pegues, PhD Professor of Systems Engineering at the United States Military Academy, West Point, New York helps us to meet the challenges in this domain.
The IEEE NJ Coast Section PACE, SIGHT Group, and with support of the Humanitarian Activities Committee, conducted an Event on 4 June 2019 in Nyack New York with team members, volunteers, stakeholders, the Mock Trial team, and additional participants. The program included IEEE Photo Booth, Video Booth, Trivia Contest, and presentations. Many informal discussions enabled by the Event provided a great opportunity for people to learn from one another, to share stories, and network. Attendees included but were not limited to: Andrea Composto, Esq. President of the Rockland County Bar Association, the Honorable Dr Duncan Rogers Lee II Esquire, Derek Davis, Equire of Harvard Law School, two additional Judges, multiple attorneys, engineers, Mock Trial team participants, parents, IEEE Members, including engineers, Eamon J Wall, Esquire Senior IEEE Member and Patent Attorney, IEEE NJ Coast Section PACE, SIGHT Group Members and volunteers. Please scroll to see courtroom sketches from the more than year long activities of the growing SIGHT Group team. Please scroll down to see still photos of the activities and Event. Please see the following videos of the Event:
Videos of the Event: 'Hear, here! Justice for All' introduction by Dr Duncan Rogers Lee, II Esquire, Director of the Nyack Mock Trial Team video 1, video 2 Andrea Composto, Esquire, President of the Rockland County Bar Association, video 3 - Derek Davis, Esquire of Harvard Law School Study of the Law, video 4 Derek Davis, Esquire continued , video 5 Derek Davis, Esquire continued , video 6 , video 7 , video 8 , video 9 , video 10 ,
In addition, we have been investigating many issues about Acoustic Analysis, Situation Awareness, and new topics to create a dialog for our Members. Some interesting finds:
https://www.20k.org/episodes/birdsong
Justice For All and Courtroom Sketches
Photographs
Bell Telephone Laboratories and Related History
- Bell Telephone Laboratories, Inc. List of Significant Innovations & Discoveries (1925-1983)
- https://ethw.org/Bell_Labs Provides a very informative History of Bell Labs from the early days when Alexander Graham Bell created a research group that for a time was the greatest in the world.
- IEEE Alexander Graham Bell Medal was established in 1976 by the IEEE Board of Directors, in commemoration of the centennial of the telephone's invention, to provide recognition for outstanding contributions to telecommunications. The invention of the telephone by Alexander Graham Bell in 1876 was a major event in electrotechnology. It was instrumental in stimulating the broad telecommunications industry that has dramatically improved life throughout the world. As an individual, Bell himself exemplified the contributions that scientists and engineers have made to the betterment of mankind.
IEEE New Jersey Coast Section Celebrating Our History: Inventing Our Future
(Including links to IEEE content, USPTO content, and some text, photos, and media by K.G. August, PhD.)
In an excerpt from the IEEE wiki page on Alexander Graham Bell, we learn that not only did he invent the Telephone, and the telecommunications industry, he was a founder of the professional organization that became the IEEE; 'Bell knew the importance of furthering the profession. He attended the organizational meeting of the American Institute of Electrical Engineers (IEEE’s predecessor society) in May 1884 where he was elected one of six founding vice presidents. And in 1891-92, he served as AIEE president.'
Inspired by Alexander Graham Bell, the History of our Section, its strong connections with Bell Labs, related telecommunications research and industry, and to further Technology for Humanity, we have embarked upon a series of activities and efforts to provide quality experiences to stimulate IEEE Member Vitality, to engage the community, to foster relationships with stakeholders, and to promote innovation for the future. We aim to shine a light on engineering with a heart locally and globally.
We have activities and efforts Celebrating Our History: Inventing Our Future including but not limited to 'Hear, here!' and 'Justice for All' where we gather our skills as engineers to investigate employing mainstream communications infrastructure such as the mobile phone and cloud connectivity, standards, and devices to extend technology for humanity to provide accessible communications and reduce disparities for those with hearing loss. The projects have received funding from IEEE-USA funded by Member donations, and also IEEE-Humanitarian Activities Committee.
Don Heirman interview on Hearing Aids and Electromagnetic Compatibility
(Follow the link above for the videos.) In an interview by K.G. August, PhD with an IEEE New Jersey Coast Section Life Member and a founder of the IEEE EMC Society, Don Heirman, PhD, we learn about his experiences with hearing loss and hearing aid technology. Video camera paid for with grant from IEEE USA funded by donations from IEEE Members.
Interesting Section History Relates to Bell Telephone Laboratories
(Including links to IEEE content, USPTO content, and some text, photos, and media by K.G. August, PhD.)
The Bell Labs Holmdel Complex was constructed between 1959 and 1962, and nearby facilities were founded even earlier providing space and conditions needed for radio research. Much of the history of the New Jersey Coast Section is integral and overlaps with the history of Bell Telephone Laboratories and that history also has a range of geographic affiliations; some of the innovations that were the lifeblood of Bell Telephone Laboratories include speech and sound, radio, radio astronomy, devices, algorithms, methods, standards, media, systems engineering, information theory, etc., and these many achievements contributed to the team, and as such, gave a sense of a shared accomplishment for all who worked for or with Bell Telephone Laboratories over the years. There is a great legacy and optimism about the strength of the team. Many of these achievements have been recognized by IEEE and other organizations through awards and milestones, many of which are on the IEEE History website, and will eventually be organized and linked to the New Jersey Coast Section History page, as many of these reflect achievements of IEEE Members from the Section, or engineers who lived in the geography of the Section. Many activities of the IEEE are organized by Society or Affinity group, but the Sections are particular to a geographic location, a special type of community and we are interested in elevating the quality of Member experiences through the particular characteristics of the geography of the Section.
An intriguing part of the history of Bell Telephone Laboratories along with the pedigree of Alexander Graham Bell himself, involves hearing and speech technologies that assist those with speech or hearing issues -- communications issues. Much of the technology was initially purposeful in the development of the Communications technologies that were a major focus of the company and the industry, and at the same time, efforts were made to provide accessible Communications to persons with issues preventing them from benefiting from general purpose Communications devices. The telephone itself further isolated people with hearing loss, which was ironic given the background of Alexander Graham Bell as a teacher of the deaf.
It is interesting to see how the engineers set out to provide accessibility in Communication to people with disabling conditions. Also, from a 21st Century perspective, it becomes very interesting to see how these technologies overlap with many other fields including but not limited to Biomedical Engineering and Robotics, which are rapidly growing fields. Although at present (April 2018) the New Jersey Coast Section does not have a Chapter of either Biomedical Engineering, nor Robotics, since those areas are experiencing growth worldwide, and since there are engineering achievements in these domains, some of the people notable in the Section and Bell Telephone Laboratories will be featured here along with their achievements so they may be considered from their historic relevance to the present time.
A Member of Bell Telephone Laboratories R. R. Riesz, also recognized by Mike Noll in his list of Significant Innovations & Discoveries (1925-1983), was very involved in innovations that demonstrate the ability of engineering to help people who had needs in order to communicate in their everyday life. One example is represented in two of his patents for Artificial Larynx: US1910966A, and US1836816A. A diagram is presented herein. One does not ordinarily think of Bell Telephone Laboratories as a Biomedical Engineering organization, yet there are many examples.
New Jersey Coast Section Events - Celebrating Our History
The Third Last Crawford Hill Picnic, October 9, 2018
An auspicious occasion held at Bell Labs on Crawford Hill in Holmdel, New Jersey brought together many to Celebrate achievements and enjoy a barbeque lunch. The event featured a presentation remembering Larry Greenstein, “Father of Propagation”, (Larry J. Greenstein Biography), recognizing Sheri Woodward, 30th service anniversary with AT&T, presenting Di Che, with the Marconi Young Scholar Award, and Celebrating Art Ashkin, Nobel Prize in Physics.
Attendees included but were not limited to Dr Arthur Ashkin 2018 Nobel Laureate Physics and Alise Ashkin and Dr Robert Wilson 1978 Nobel Laureate Physics and Elizabeth Wilson.
For the full photo gallery, see the The Third Last Crawford Hill Picnic page.
Awards Banquet 7 June 2018
(With photos by K.G. August, PhD.)
Fundamental Sources of Radiation
(Click link above to View Videos of the Event, discussions by attendees, and to view photo gallery of the event. Videos by Eamon J. Wall, Esq. Photos by K.G. August, PhD.)
2010-04-27: Dr. Omar Ramahi : “What Causes Radiation?” Linked here in PDF format.
Some attendees include:
Thomas M. Willis III https://patents.justia.com/inventor/thomas-m-willis-iii
Margaret Lyons Chair WIE/EdSoc
Alex Walter Esq.
Filomena Citarella Section Treasurer, Vice Chair AP/EMC/VT
Donald Aves
Kit August Section Historian, Secretary AP/EMC/VT
Eamon Wall Esq.
Manu Malek
50th Anniversary of the New Jersey Coast Section May 2015
The 50th Anniversary of the Section was commemorated at a dinner at the Colts Neck Inn, Colts Neck, New Jersey. Highlights included a Keynote presentation by IEEE New Jersey Coast Section Nobel Laureate, Dr Robert W Wilson.
Keynote by Dr Robert W. Wilson Nobel Laureate – Senior Scientist, Smithsonian Astrophysical Observatory, Harvard Smithsonian Center for Astrophysics
Recently, Dr Wilson was technical leader of the Sub-Millimeter Array radio telescope. His early work at Bell Labs was in the field of Galactic radio astronomy and precision measurement of radio source strengths. He is best known for his part in the 1964 discovery of the cosmic background radiation thought to have originated in the early stages of the big bang. He helped to extend radio spectroscopy to short millimeter wavelengths discovering interstellar molecules including Carbon Monoxide. Molecular astronomy has increased our knowledge of how stars form out of interstellar gas. While at Bell Labs, he measured earth-space propagation for satellite communication, made infrared propagation measurements, and worked in wireless communications and optical networking.
He is co-recipient of the Henry Draper Medal from the U.S. National Academy of Science and the Herschel Medal from the Royal Astronomical Society, London and the 1978 Nobel Prize in Physics. Dr Wilson received a BA from Rice University in 1957 and a PhD from California Institute of Technology in 1962.
See the 50th Anniversary of the New Jersey Coast Section for the full photo gallery of the event. (Photos by K.G. August, PhD.)