Fred C. Lee

Revision as of 19:55, 25 January 2016 by Administrator1 (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Fred C. Lee
Fields of study
Microprocessors

Biography

A world authority on high-frequency power conversion design, modeling, and control, Fred C. Lee has pioneered technologies that provide more efficient power conversion and improved reliability in devices and systems, impacting applications ranging from personal computing and mobile devices to military and industrial equipment. Dr. Lee introduced “soft switching” technologies during the 1980s to combat the undesired switching losses, electrical and thermal stresses, and electromagnetic interference caused by high-frequency power conversion. His zero-voltage switching for resonant, quasiresonant, multiresonant, and pulse-width-modulated converters have become core components of modern power electronics equipment and systems. During the 1990s, Dr. Lee and his students developed a novel multiphase voltage regulator (VR) module for new generations of Intel microprocessors. Dr. Lee and his students have generated 25 U.S. patents addressing key areas such as power delivery architecture, modularity and scalability, control and sensing, integrated magnetics, and advanced packaging and integration. Today, every PC and server microprocessor is powered with this VR. These technologies have been further extended to high-performance graphical processors, server chipset and memory devices, networks, telecommunications, and all forms of mobile electronics. Dr. Lee has helped power electronics industries realize their full power-saving potential by overcoming the cost and reliability roadblocks caused by using nonstandard components and labor-intensive manufacturing. He and his team have developed advanced integration concepts and technologies suitable for standardization and automation using integrated power electronics modules (IPEMs) that have provided improvements in performance and cost reduction. IPEMs have been commercialized and are widely used today in powering the new generation of microprocessors, photovoltaic converters, variable-speed motor drives, and electric/hybrid vehicles.

An IEEE Fellow and member of the US National Academy of Engineering, Dr. Lee is currently a University Distinguished Professor with the Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.