Difference between revisions of "David N. Payne"

Line 1: Line 1:
 
== Biography  ==
 
== Biography  ==
 +
 +
[[Image:Payne David.jpg|thumb|right]]
  
 
During his four-decade career at the U.K.’s University of Southampton, David Payne has designed some of the highest power [[Fiber Optics|fiber lasers]] in the world and generated a host of fiber components in the telecoms and sensor arenas. He pioneered several key related developments, including photonics-based technologies for telecommunications, optical sensors, nanophotonics and optical materials. He also led the teams that invented the silica single-mode fiber laser and amplifier and broke the kilowatt barrier for high power fibre laser output. He was the first to use phosphorous as a core dopant to achieve numerous processing advantages and developed the erbium-doped fiber amplifier, which created a revolution in optical-fiber communications.
 
During his four-decade career at the U.K.’s University of Southampton, David Payne has designed some of the highest power [[Fiber Optics|fiber lasers]] in the world and generated a host of fiber components in the telecoms and sensor arenas. He pioneered several key related developments, including photonics-based technologies for telecommunications, optical sensors, nanophotonics and optical materials. He also led the teams that invented the silica single-mode fiber laser and amplifier and broke the kilowatt barrier for high power fibre laser output. He was the first to use phosphorous as a core dopant to achieve numerous processing advantages and developed the erbium-doped fiber amplifier, which created a revolution in optical-fiber communications.

Revision as of 17:34, 29 September 2011

Biography

Payne David.jpg

During his four-decade career at the U.K.’s University of Southampton, David Payne has designed some of the highest power fiber lasers in the world and generated a host of fiber components in the telecoms and sensor arenas. He pioneered several key related developments, including photonics-based technologies for telecommunications, optical sensors, nanophotonics and optical materials. He also led the teams that invented the silica single-mode fiber laser and amplifier and broke the kilowatt barrier for high power fibre laser output. He was the first to use phosphorous as a core dopant to achieve numerous processing advantages and developed the erbium-doped fiber amplifier, which created a revolution in optical-fiber communications.

A Fellow of the Royal Society, the Royal Academy of Engineering, the IEE, and the Optical Society of America, he is currently director of the University of Southampton’s Optoelectronics Research Centre.