Energy Efficiency & Renewable Energy: Challenges and Opportunities

Sam Baldwin
Chief Science Officer

Rethink, Reimagine and Recreate the Energy EcoSystem
IEEE GreenTech 2013
Denver, CO
April 4, 2013
Overview

Challenges

• Economy—economic development and growth; energy imports
• Security—foreign energy dependence, energy availability
• Environment—local (particulates, water), regional (acid rain), global (GHGs)

What role can EE & RE serve in meeting these Challenges?

• Efficiency: Buildings, Industry, Transport
• Renewable Fuels
• Renewable Electricity

Speed and Scale
The Oil Problem

<table>
<thead>
<tr>
<th>Nations that HAVE oil (% of Global Reserves*)</th>
<th>Nations that NEED oil (% of Global Consumption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saudi Arabia 26%</td>
<td>U.S. 24%</td>
</tr>
<tr>
<td>Iraq 11</td>
<td>China 8.6</td>
</tr>
<tr>
<td>Kuwait 10</td>
<td>Japan 5.9</td>
</tr>
<tr>
<td>Iran 9</td>
<td>Russia 3.4</td>
</tr>
<tr>
<td>UAE 8</td>
<td>India 3.1</td>
</tr>
<tr>
<td>Venezuela 6</td>
<td>Germany 2.9</td>
</tr>
<tr>
<td>Russia 5</td>
<td>Canada 2.8</td>
</tr>
<tr>
<td>Mexico 3</td>
<td>Brazil 2.6</td>
</tr>
<tr>
<td>Libya 3</td>
<td>S. Korea 2.6</td>
</tr>
<tr>
<td>China 3</td>
<td>Mexico 2.4</td>
</tr>
<tr>
<td>Nigeria 2</td>
<td>France 2.3</td>
</tr>
<tr>
<td>U.S. 2</td>
<td>Italy 2.0</td>
</tr>
<tr>
<td>Total</td>
<td>85 MM Bbl/day</td>
</tr>
</tbody>
</table>

Source: EIA International Energy Annual; *Conventional Oil
Resources and Supply Projections

Discovery of Giant Oil Fields by Decade
Fredrik Robelius, Uppsala Universitet

New oil supply by type in the new policies scenario
IEA World Energy Outlook 2012, Fig. 3.15
Unconventional Resources

• **Constraints:** Cost; Energy; Water; Atmosphere

Source: IEA, World Energy Outlook 2008, part B, Figure 9.10
Potential Impacts of GHG Emissions

- Temperature Increases
 - Ice Loss from Glaciers, Ocean Thermal Expansion, and Sea Level Rise
 - Ecological Zone Shifts ... and Extinctions
 - Agricultural Zone Shifts ... and Productivity

- Ocean Acidification

- Precipitation Changes and Water Availability
 - Agricultural Productivity
 - Wildfire Increases

Inter-Academy Panel
Statement On Ocean Acidification
1 June 2009

• Signed by the National Academies of Science of 70 nations:
 o Argentina, Australia, Bangladesh, Brazil, Canada, China, France, Denmark, Greece, India, Japan, Germany, Mexico, Pakistan, Spain, Taiwan, U.K., U.S.....

• “The rapid increase in CO₂ emissions since the industrial revolution has increased the acidity of the world’s oceans with potentially profound consequences for marine plants and animals, especially those that require calcium carbonate to grow and survive, and other species that rely on these for food.”
 o Change to date of pH decreasing by 0.1, a 30% increase in hydrogen ion activity.

• “At current emission rates, models suggest that all coral reefs and polar ecosystems will be severely affected by 2050 or potentially even earlier.”
 o At 450 ppm, only 8% of existing tropical and subtropical coral reefs in water favorable to growth; at 550 ppm, coral reefs may be dissolving globally.

• “Marine food supplies are likely to be reduced with significant implications for food production and security in regions dependent on fish protein, and human health and well-being.”
 o Many coral, shellfish, phytoplankton, zooplankton, & the food webs they support

• “Ocean acidification is irreversible on timescales of at least tens of thousands of years.”
Drought?

Aiguo Dai, “Increased drought under global warming in observations and models”, Nature Climate Change V.3, Jan. 2013, pp.52-58
Storms and Power System Interruptions

Northeast Blackout
New York City
August 2003

Hurricane Katrina
August 2005

Midwest & Mid-Atlantic Derecho
June 2012

Kristina Hamachi LaCommare, and Joseph H. Eto, LBNL
Scale of the Challenge

- Install 1 million 2-MW wind turbines.
- Install 3000 GW-peak of Solar power.
- Increase fuel economy of 2 billion cars from 30 to 60 mpg.
- Cut carbon emissions from buildings by additional one-fourth by 2050.
- Introduce Carbon Capture and Storage at 800 GW of coal-fired power.
- Install 700 GW of nuclear power.

See also: Steven J. Davis, Long Cao, Ken Caldeira, Martin I. Hoffert, “Rethinking Wedges”, Environ. Res. Lett, 8 (2013)

Time Constants

- Political consensus building ~ 3-30+ years
- Technical R&D ~10+
- Production model ~ 4+
- Financial ~ 2++
- Market penetration ~10++
- Capital stock turnover
 - Cars ~ 15
 - Appliances ~ 10-20
 - Industrial Equipment ~ 10-30/40+
 - Power plants ~ 40+
 - Buildings ~ 80
 - Urban form ~100’s

- Lifetime of Greenhouse Gases ~10’s-1000’s
- Reversal of Land Use Change ~100’s
- Reversal of Extinctions Never

Speed and Scale
Can EE & RE Meet These Challenges?

- **Extending Current Options**
 - Fossil/CCS
 - Nuclear

- **Efficiency**
 - Buildings
 - Industry
 - Transportation
 - Smart End-Use Equipment (dispatched w/ PV)
 - Plug-In Hybrids/Smart Charging Stations

- **Renewable Energy & Energy Storage**
 - Biomass
 - Geothermal
 - Hydropower
 - Ocean Energy
 - Solar Photovoltaics / Smart Grid / Battery Storage
 - Solar Thermal / Thermal Storage / Natural Gas
 - Wind / Compressed Air Energy Storage / Natural Gas

- **Transmission Infrastructure**
 - Smart Grid
Energy Efficiency: 1970-2010

U.S. Energy Consumption

U.S. Energy Consumption at constant 1970 E/GDP

Efficiency; Structural Change: Total ~100+

New Supply
- Gas 1.8Q
- RE 2.8
- Nucl 8.2
- Oil 10.3
- Coal 10.5
- Total ~34
End-use Efficiency Upstream Leverage

Motor Drive System Efficiency

Reducing energy loss in end-use systems has large leverage upstream!
Solar Decathlon
8-18 October 2009

Architecture
Engineering
Market Viability
Communications
Comfort

Appliances
Hot Water
Lighting
Energy Balance
Net Metering

Cornell; Iowa State; Penn State; Rice; Team Alberta (U. Calgary, SAIT Polytechnic, Alberta College, Mount Royal College); Team Boston (Boston Architectural College, Tufts); Team California (Santa Clara U., California College of Arts); Team Missouri (Missouri S&T, U. Missouri); Team Ontario/BC (U. Waterloo, Ryerson, Simon Fraser); Technische Universitat Darmstadt; Universidad Politecnica de Madrid; Ohio State; U. Arizona; U. Puerto Rico; U. Illinois-Urbana; U. Kentucky; U. Louisiana-Lafayette; U. Minnesota; U. Wisconsin-Milwaukee; Virginia Tech.
Refrigerator Performance

Savings: \(\sim 1400 \text{ kWh/year} \times \$0.10/\text{kWh} = \$140/\text{yr} \text{ per household} \)
*100 M households = \$14 B/year

Annual Energy Use, Volume and Real Price of New Refrigerators

Sources: AHAM Factbooks, Rosenfeld 1999 and Bureau of Labor Statistics
Wind Resources

- Highest quality wind resources are located in the Central states and offshore
- Fixed-bottom offshore wind resources also considered in RE Futures modeling
- Floating-platform offshore wind not considered in RE Futures modeling (focus on currently commercial technologies only)
- Combined onshore and offshore (fixed-bottom) resource is ~10,000 GW
Wind Power

- “20% Wind Energy by 2030”, 2008
- “Eastern Wind Integration and Transmission Study”, 2010
 - http://www.nrel.gov/electricity/transmission/eastern_renewable.html
- “Western Wind and Solar Integration Study”, 2010
- Hawaii Renewable Integration and Transmission Study

Typical Rotor Diameters

- 0.75 MW
- 1.5 MW
- 2.5 MW
- 3.5 MW
- 5 MW

Source: EERE/WTP
Can Solar Energy Meet the Challenge?

- Solar technologies have enormous resource potential: ~80,000 GW for utility PV, ~700 GW for rooftop PV, and ~37,000 GW for CSP

Cumulative Installed PV (through 2009)

- Germany 9,785 MW
- Spain 3,386 MW
- Japan 2,633 MW
- Rest of World 2,374 MW
- U.S. 1,650 MW
- China 305 MW
- Rest of E.U. 1,333 MW
- France 272 MW
- Italy 1,167 MW

Source: EERE/SETP, Goldstein
PV Module Price, 2009$

First Solar Module Cost

Source: Navigant & Robert Margolis, NREL
SunShot: Direct Cost Competitive Solar by 2020

Cost Reductions

- Power Electronics
- BOS Hardware
- BOS Non-Hardware
- Module

Installed System Price ($/WDC)

System Price 2010
2010-2012 Reductions
Power Electronics
BOS Hardware
Soft BOS
Efficiency Improvements
Module Manufacturing
SunShot Target

- $3.80/W
- $1.00/W

~$1.20/W drop in 2 years
Concentrating Solar Thermal Power

Filters:
Transmission >6.75kWh/m²d
Environment X
Land Use X
Slope < 1%

Map and table courtesy of NREL

<table>
<thead>
<tr>
<th>State</th>
<th>Land Area (mi²)</th>
<th>Solar Capacity (MW)</th>
<th>Solar Generation Capacity (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AZ</td>
<td>13,613</td>
<td>1,742,461</td>
<td>4,121,268</td>
</tr>
<tr>
<td>CA</td>
<td>6,278</td>
<td>803,647</td>
<td>1,900,786</td>
</tr>
<tr>
<td>CO</td>
<td>6,232</td>
<td>797,758</td>
<td>1,886,858</td>
</tr>
<tr>
<td>NV</td>
<td>11,090</td>
<td>1,419,480</td>
<td>3,357,355</td>
</tr>
<tr>
<td>NM</td>
<td>20,356</td>
<td>2,605,585</td>
<td>6,162,729</td>
</tr>
<tr>
<td>TX</td>
<td>6,374</td>
<td>815,880</td>
<td>1,929,719</td>
</tr>
<tr>
<td>UT</td>
<td>23,288</td>
<td>2,980,823</td>
<td>7,050,242</td>
</tr>
<tr>
<td>Total</td>
<td>87,232</td>
<td>11,165,633</td>
<td>26,408,956</td>
</tr>
</tbody>
</table>
SunShot Vision Study

2050 PV Capacity: 632 GW

2050 CSP Capacity: 83 GW

PV Capacity (GW)

- < 0.5
- 0.5 - 1
- 1 - 5
- 5 - 10
- 10 - 30
- 30 - 50
- > 50

2050 Transmission Expansion

CSP Capacity (GW)

- < 0.5
- 0.5 - 1
- 1 - 5
- 5 - 10
- 10 - 15
- 15 - 20
- > 20

Hourly Dispatch

Four Summer Days (2050 Simulation)

http://www1.eere.energy.gov/solar/sunshot/vision_study.html
Geothermal Resources and Technologies

- U.S. capacity is ~3,086 MW; ~7,000 MW under study
Three primary pathways for providing clean electricity:
- Renewable energy;
- Nuclear energy;
- Fossil energy with carbon capture, utilization, and storage (CCUS).

All will likely contribute to clean electricity needs for the foreseeable future.

Energy efficiency improvements in end-use sectors are a critical contributor to all these pathways.

This multi-pathway approach is consistent with the Administration’s all-of-the-above energy strategy.
- In the electricity sector, this strategy is further defined by the Administration’s goal of achieving 80% of electricity generation from clean electricity sources by 2035—renewables, nuclear, efficient natural gas, clean coal.
Renewable Electricity Systems

- Hydropower
- BioPower
- Photovoltaics
- Concentrating Solar Power (CSP)
- Distributed Generation
- Demand Response
- Distributed Storage
- Smart Grid
- Geothermal
- Wind
- Concentrating Solar Power (CSP)
- Photovoltaics

- Energy Intensity
- Site Specificity
- Variability & Uncertainty
- System Integration
REF Report Editors, Authors, and Contributors*

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maureen Hand</td>
<td>NREL</td>
</tr>
<tr>
<td>Sam Baldwin</td>
<td>DOE</td>
</tr>
<tr>
<td>Ed DeMeo</td>
<td>RECS, Inc.</td>
</tr>
<tr>
<td>John Reilly</td>
<td>MIT</td>
</tr>
<tr>
<td>Trieu Mai</td>
<td>NREL</td>
</tr>
<tr>
<td>Doug Arent</td>
<td>NREL</td>
</tr>
<tr>
<td>Gian Porro</td>
<td>NREL</td>
</tr>
<tr>
<td>Mike Meshek</td>
<td>NREL</td>
</tr>
<tr>
<td>Debra Sandor</td>
<td>NREL</td>
</tr>
<tr>
<td>Arlene Anderson</td>
<td>DOE</td>
</tr>
<tr>
<td>Chad Augustine</td>
<td>NREL</td>
</tr>
<tr>
<td>Richard Bain</td>
<td>NREL</td>
</tr>
<tr>
<td>Jonathan Baker</td>
<td>MIT, formerly</td>
</tr>
<tr>
<td>Chaitanya Baone</td>
<td>ORNL</td>
</tr>
<tr>
<td>Galen Barbose</td>
<td>LBNL</td>
</tr>
<tr>
<td>David B. Belzer</td>
<td>PNNL</td>
</tr>
<tr>
<td>Norman A. Bishop</td>
<td>Knight Piésold and Co.</td>
</tr>
<tr>
<td>Gregory Brinkman</td>
<td>NREL</td>
</tr>
<tr>
<td>Daryl R. Brown</td>
<td>PNNL</td>
</tr>
<tr>
<td>Stephen R. Brown</td>
<td>HDR</td>
</tr>
<tr>
<td>John Burkhardt</td>
<td>NREL, formerly</td>
</tr>
<tr>
<td>Glenn F. Cada</td>
<td>ORNL</td>
</tr>
<tr>
<td>Gonçalo Cardoso</td>
<td>LBNL</td>
</tr>
<tr>
<td>Jay Caspary</td>
<td>Southwest Power Pool</td>
</tr>
<tr>
<td>Peter Chan</td>
<td>LBNL</td>
</tr>
<tr>
<td>Jamie Chapman</td>
<td>Vestas/Texas Tech U</td>
</tr>
<tr>
<td>Michael Coddington</td>
<td>NREL</td>
</tr>
<tr>
<td>Elliot Cohen</td>
<td>NREL, formerly</td>
</tr>
<tr>
<td>Lynn Coles</td>
<td>NREL</td>
</tr>
<tr>
<td>Naim Darghouth</td>
<td>LBNL</td>
</tr>
<tr>
<td>Paul Denholm</td>
<td>NREL</td>
</tr>
<tr>
<td>James A. Dirks</td>
<td>PNNL</td>
</tr>
<tr>
<td>Steven Doig</td>
<td>RMI</td>
</tr>
<tr>
<td>Stacey Dolan</td>
<td>NREL, formerly</td>
</tr>
<tr>
<td>Mark Downing</td>
<td>ORNL</td>
</tr>
<tr>
<td>Easan Drury</td>
<td>NREL</td>
</tr>
<tr>
<td>Erik Ela</td>
<td>NREL</td>
</tr>
<tr>
<td>Fort Felker</td>
<td>NREL</td>
</tr>
<tr>
<td>Steven J. Fernandez</td>
<td>ORNL</td>
</tr>
<tr>
<td>Barry Friedman</td>
<td>NREL</td>
</tr>
<tr>
<td>Alan C. Goodrich</td>
<td>NREL</td>
</tr>
<tr>
<td>Scott Haase</td>
<td>NREL</td>
</tr>
<tr>
<td>Stanton W. Hadley</td>
<td>ORNL</td>
</tr>
<tr>
<td>George Hagerman</td>
<td>Virginia Polytechnic</td>
</tr>
<tr>
<td>Douglas G. Hall</td>
<td>INL</td>
</tr>
<tr>
<td>Garvin Heath</td>
<td>NREL</td>
</tr>
<tr>
<td>Donna Heimiller</td>
<td>NREL</td>
</tr>
<tr>
<td>Jeff Hein</td>
<td>NREL, formerly</td>
</tr>
<tr>
<td>Donna Hostick</td>
<td>PNNL</td>
</tr>
<tr>
<td>Michael Kintner-Meyer</td>
<td>PNNL</td>
</tr>
<tr>
<td>Brendan Kirby</td>
<td>Consult Kirby</td>
</tr>
<tr>
<td>John D. Kueck</td>
<td>ORNL</td>
</tr>
<tr>
<td>Eric Lantz</td>
<td>NREL</td>
</tr>
<tr>
<td>Jeffrey Logan</td>
<td>NREL</td>
</tr>
<tr>
<td>Jordan Macknick</td>
<td>NREL</td>
</tr>
<tr>
<td>Margaret Mann</td>
<td>NREL</td>
</tr>
<tr>
<td>Robert Margolis</td>
<td>NREL</td>
</tr>
<tr>
<td>Tony Markel</td>
<td>NREL</td>
</tr>
<tr>
<td>Chris Marnay</td>
<td>LBNL</td>
</tr>
<tr>
<td>Craig Mataczynski</td>
<td>RES Americas</td>
</tr>
<tr>
<td>Mark Mehos</td>
<td>NREL</td>
</tr>
<tr>
<td>Michael Milligan</td>
<td>NREL</td>
</tr>
<tr>
<td>Andrew Mills</td>
<td>LBNL</td>
</tr>
<tr>
<td>Matthew Mowers</td>
<td>NREL, formerly</td>
</tr>
<tr>
<td>Clay Nichols</td>
<td>DOE</td>
</tr>
<tr>
<td>Dave O'Connor</td>
<td>EPRI</td>
</tr>
<tr>
<td>Patrick O’Donoughue</td>
<td>NREL</td>
</tr>
<tr>
<td>Andrew Oliver</td>
<td>RES Americas</td>
</tr>
<tr>
<td>Sean O’Neil</td>
<td>Ocean Renewable</td>
</tr>
<tr>
<td>Joshua Paquette</td>
<td>SNL</td>
</tr>
<tr>
<td>Robert Perlack</td>
<td>ORNL</td>
</tr>
<tr>
<td>Trucy Phan</td>
<td>LBNL</td>
</tr>
<tr>
<td>Jon Pietszukiewicz</td>
<td>Black & Veatch</td>
</tr>
<tr>
<td>Pamala Sawyer</td>
<td>MIT</td>
</tr>
<tr>
<td>Adam Schlosser</td>
<td>NREL</td>
</tr>
<tr>
<td>Thomas Schneider</td>
<td>NREL, formerly</td>
</tr>
<tr>
<td>Walter Short</td>
<td>UWIG</td>
</tr>
<tr>
<td>Charles Smith</td>
<td>MIT</td>
</tr>
<tr>
<td>Ken Strzepek</td>
<td>DOE</td>
</tr>
<tr>
<td>Greg Stillman</td>
<td>NREL</td>
</tr>
<tr>
<td>Patrick Sullivan</td>
<td>NREL</td>
</tr>
<tr>
<td>Suzanne Tegen</td>
<td>NREL</td>
</tr>
<tr>
<td>Robert Thresher</td>
<td>NREL</td>
</tr>
<tr>
<td>Lan Trinh</td>
<td>ABB</td>
</tr>
<tr>
<td>Craig Turchi</td>
<td>NREL</td>
</tr>
<tr>
<td>Paul Veers</td>
<td>SNL/NREL</td>
</tr>
<tr>
<td>Martin Vorum</td>
<td>NREL</td>
</tr>
<tr>
<td>Ethan Warner</td>
<td>NREL</td>
</tr>
<tr>
<td>Lawrence D. Willey</td>
<td>GE/Clipper Windpower</td>
</tr>
<tr>
<td>Ryan Wiser</td>
<td>LBNL</td>
</tr>
<tr>
<td>Katherine Young</td>
<td>NREL</td>
</tr>
<tr>
<td>Jinxiang Zhu</td>
<td>ABB</td>
</tr>
</tbody>
</table>

* These individuals have not reviewed or approved the content of this presentation.

Project Steering Committee Members

- Doug Arent, Chair - NREL
- Jessica Bian - NERC
- Aaron Bennett* - NERC
- Mark Brownstein - EDF
- Nils Mellquist - Deutsche Asset Management
- Clark W. Gellings - EPRI
- Kurt J. Haeger - Xcel Energy
- John (Skip) Laitner - ACEEE
- Douglas Larson - Western Interstate Energy Board
- James Lyons - Novus Energy Partners
- Ben Paulos - Energy Foundation
- Katie McCormack’ - Energy Foundation
- Mark O’Malley - University College Dublin
- Dale W. Osborn - MISO
- Frederick Weston - Regulatory Assistance Project

Support for the Renewable Electricity Futures study was provided by the U.S. Department of Energy’s Office of Energy Efficiency & Renewable Energy.
RE Futures Analysis and Report

• RE Futures is an analysis of the U.S. electric sector focused on 2050 that explores
 o Whether the U.S. power system can supply electricity to meet customer demand with high levels of renewable electricity, including variable wind and solar generation
 o Grid integration using models with unprecedented geographic and time resolution for the contiguous U.S.
 o Synergies, constraints, and operational issues associated with a transformation of the U.S. electric sector

RE Futures is a U.S. DOE-sponsored collaboration with more than 110 contributors from about 35 organizations, including national laboratories, industry, universities, and NGOs.

• Volume 1: Exploration of High-Penetration Renewable Electricity Futures
• Volume 2: Renewable Electricity Generation and Storage Technologies
• Volume 3: End-Use Electricity Demand

Published June 2012. www.nrel.gov/RE_Futures
Boundaries

<table>
<thead>
<tr>
<th>RE Futures does....</th>
<th>RE Futures does not...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify commercially available RE generation technology combinations that meet up to 80% or more of projected 2050 electricity demand in every hour of the year</td>
<td>Consider policies, new operating procedures, evolved business models, market rules, or regulatory frameworks that could facilitate high levels of RE generation</td>
</tr>
<tr>
<td>Identify electric sector characteristics associated with high levels of RE generation</td>
<td>Fully evaluate power system reliability</td>
</tr>
<tr>
<td>Explore a variety of high renewable electricity generation scenarios</td>
<td>Forecast or predict the evolution of the electric sector</td>
</tr>
<tr>
<td>Estimate associated US electric sector carbon emissions reductions</td>
<td>Assess optimal pathways to achieve a low-carbon electricity system</td>
</tr>
<tr>
<td>Explore a select number of economic, environmental and social impacts</td>
<td>Conduct comprehensive cost-benefit analysis</td>
</tr>
<tr>
<td>Illustrate a RE-specific pathway to a clean electricity future to inform the development of integrated portfolio scenarios that include consideration of all technology pathways and their implications</td>
<td>Provide a definitive assessment of high RE generation, but does identify areas for deeper investigation</td>
</tr>
</tbody>
</table>
RE Futures Modeling Framework

Only currently commercial technologies were modeled, with incremental and evolutionary improvements.

ITI Projection (by Black & Veatch)
ETI Projections (by Tech Teams)
Flexible Resources
End-Use Electricity
System Operations
Transmission

Technology cost & performance
Resource availability
Demand projection
Demand-side technologies
Grid operations
Transmission costs

SolarDS (rooftop PV market penetration)
GridView (by ABB Inc.) (hourly production cost)

2050 mix of generators
does it balance hourly?

Implications
GHG Emissions
Water Use
Land Use
Direct Costs

Capacity & Generation 2010-2050

High resolution modeling using 134 nodes & hourly time steps
Regional Energy Deployment Systems Model (ReEDS)

- **Capacity expansion & dispatch** for the continental U.S. electricity sector, including transmission and all major generator types
- **Minimize total system cost** in each 2-year investment period until 2050. All constraints (e.g. balance load, planning & operating reserves, etc.) must be satisfied. Linear program without inter-temporal optimization (nonlinear calcs between periods)
- **Multi-regional**: 356 regions in continental US; 134 power control areas; RTOs; States; NERC areas; Interconnection areas.
- **Temporal Resolution**: 17 time slices in each year: 4 daily x 4 seasons, 1 super-peak
Operating the Electricity System

- Commercial production cost model
- Hourly chronological model, 8760 hours
- Realistic plant flexibility parameters
- Directly simulates plant outages and forecast error events, unserved load
- Transmission: DC power flow

- Used by ISOs, utilities, others for planning—transmission/generation expansion; total production cost, prices, congestion, etc.
- 11,000 Generators; 85,000 Transmission lines; 34,000 Buses with load; 65,000 nodes; 136 transmission zones
- Commits/Dispatches generating units based on electricity demand, operating characteristics of generators, transmission grid parameters.

Does the system operate (hourly)?
Scenarios and Assumptions

- **Renewable Technology Improvements:** NTI, ITI, ETI
- **Exploratory Scenarios:** 30%, 40%, 50%, 60%, 70%, 80%, 90%
- **System Constraints:** Transmission, Flexibility, Resources
- **Sensitivities:** Demand—High/Low, Fossil Fuel Costs—High/Low, Fossil Technology

- **Energy Efficiency:** Most scenarios assumed significant energy efficiency measures in the residential, commercial, industrial sectors.
- **Transportation:** Most scenarios assumed a shift toward plug-in hybrid or electric vehicles, partially offsetting the electricity efficiency advances that were considered.

- **Grid Flexibility:** Most scenarios assumed improved electric system operations to enhance flexibility in both electricity generation and end-use demand, helping to enable more efficient integration of variable-output renewable electricity generation.
- **Transmission:** Most scenarios expanded transmission infrastructure and access to support renewable energy deployment. Distribution-level upgrades were not considered.
- **Siting and Permitting:** Most scenarios assumed project siting/permitting that allows RE development and transmission expansion with standard land-use exclusions.
Scenarios and Sensitivity Cases

<table>
<thead>
<tr>
<th>Case</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RE-ITI</td>
<td>Costs at Incremental Technology Improvement; only commercial technologies considered</td>
</tr>
<tr>
<td>RE-ETI</td>
<td>Costs at Evolutionary Technology Improvement; only commercial technologies considered</td>
</tr>
<tr>
<td>RE-NTI</td>
<td>Costs at 2010 levels and frozen through 2050—no technology improvement</td>
</tr>
<tr>
<td>Constrained</td>
<td>Costs of transmission lines increased 3X</td>
</tr>
<tr>
<td>Transmission</td>
<td>Only allow new transmission lines along existing corridors between BAs</td>
</tr>
<tr>
<td></td>
<td>Disallow new intertie capacity</td>
</tr>
<tr>
<td></td>
<td>Double transmission loss factors</td>
</tr>
<tr>
<td></td>
<td>Limit transmission of variable RE to 1,000 miles (all other scenarios assume 2,000-mile limit)</td>
</tr>
<tr>
<td></td>
<td>Double the deployment of rooftop PV</td>
</tr>
<tr>
<td>Constrained</td>
<td>Halve the capacity value of wind and PV</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Double the reserves for wind and solar forecast errors</td>
</tr>
<tr>
<td></td>
<td>Set required minimum load of coal & biomass plants to 70% (all other scenarios assume 40%)</td>
</tr>
<tr>
<td></td>
<td>Cap availability of interruptible load to 2010 levels in all years</td>
</tr>
<tr>
<td>Constrained</td>
<td>Halve available resource base for all RE technologies (except utility-scale and distributed PV)</td>
</tr>
<tr>
<td>Resources</td>
<td>For biopower, this meant halving the available biomass feedstock</td>
</tr>
<tr>
<td>High-Demand</td>
<td>"Business-as-usual" higher growth in electricity demand</td>
</tr>
<tr>
<td>80% RE</td>
<td>50% greater deployment of rooftop PV</td>
</tr>
<tr>
<td>FE-Cost/Tech</td>
<td>Fossil fuel costs 30% higher/lower than base; Fossil Technology advances faster than base</td>
</tr>
</tbody>
</table>
Renewable Resources and Technologies

- Biopower ~100 GW
 - Stand-alone
 - Cofired with coal

- CSP ~37,000 GW
 - Trough
 - Tower
 - With thermal storage

- Geothermal ~36 GW
 - Hydrothermal

- Hydropower ~200 GW
 - Run-of-river

- PV ~80,000 GW
 - Residential
 - Commercial
 - Utility-scale
 (rooftop ~700 GW)

- Wind ~10,000 GW
 - Onshore
 - Offshore fixed-bottom

- Only currently commercial technologies were modeled (no EGS, ocean, floating wind) with incremental and evolutionary improvements.

- RE characteristics, including location (exclusions), technical resource potential, and grid output (dispatchability), were considered

- Technical resource potential shown, not economic potential
ReEDS Outputs

Baseline scenario

80% RE-ITI scenario

- **Renewable generation sources** could supply 80% of U.S. Electricity in 2050
- **Operational** challenges (curtailment, forecast, reserves) grow with deployment of VRE
- **Transmission** expansion can be significant with high RE targets
- **Storage** deployment grows with increasing RE targets
Renewable generation resources could adequately supply 80% of total U.S. electricity generation in 2050 while balancing supply and demand.

RE-ITI scenarios

- **Deployment** significant for all major renewables
- **Operational** challenges (curtailment, forecast, reserves) grow with deployment of VRE
- **Transmission** expansion significant with high RE targets (though reduced because of the low demand assumption and reduced conventional generation)
- **Storage** deployment grows with increasing RE targets
- **Costs** rise non-linearly with RE deployment (but not exponentially)
Electricity supply and demand can be balanced in every hour of the year in each region with 80% electricity from renewables*.

*Full reliability analysis not conducted in RE Futures.
Installed capacity is sufficient to meet summer afternoon peak demand from diverse reserves.

Firm capacity from:
- Biopower
- Geothermal
- Hydropower
- CSP with storage
- Gas
- Coal
- Nuclear
- Utility-scale storage

Installed capacity is sufficient to meet summer afternoon peak demand from diverse reserves.
Flexible Electricity System Manages Variability

- Operational challenges for high renewable scenarios are most acute during low-demand periods (e.g., spring).
- There is greater thermal power plant ramping and cycling, as well as increased curtailment of excess renewable generation (8-10% of wind, solar, and hydropower curtailed in 2050).
- Storage and demand-side options (e.g. PHEV charging) can help shift loads to mitigate these challenges, e.g., 100-150 GW of storage & 28-48 GW of interruptible load deployed in 2050 for (low demand) 80%-by-2050 RE scenarios.

Source: Renewable Electricity Futures (2012)
As RE deployment increases, additional transmission infrastructure is required

- In most 80%-by-2050 RE scenarios, 110-190 million MW-miles of new transmission lines are added.
- AC-DC-AC interties are expanded to allow greater power transfer between asynchronous interconnects.
- However, 80% RE is achievable even when transmission is severely constrained (30 million MW-miles)—which leads to a greater reliance on local resources (e.g. PV, offshore wind).
- Annual transmission and interconnection investments in the 80%-by-2050 RE scenarios range from B$5.7-8.4/year, which is within the range of recent total investor-owned utility transmission expenditures.
- High RE scenarios lead to greater transmission congestion, line usage, and transmission and distribution losses.
All regions of the country could contribute substantial renewable electricity supply in 2050.
Incremental cost associated with high RE generation is comparable to published cost estimates of other clean energy scenarios

- Incremental cost reflects replacement of existing generation plants with new generators and additional balancing requirements (combustion turbines, storage, and transmission) compared to baseline scenario (continued evolution of today’s conventional generation system)
- Improvement in cost and performance of RE technologies is the most impactful level in reducing the incremental cost
- Cost is less sensitive to the assumed electric system constraints (transmission, flexibility, RE resource access)
No insurmountable long-term constraints to RE technology manufacturing capacity, materials supply, or labor availability were identified.
80% renewable electricity in 2050 could lead to:

- ~80% reduction in GHG emissions (combustion-only and full life-cycle)
- ~50% reduction in electric sector water use (withdrawals and consumption)
RE Land Use Implications

• Area requirements:
 o Gross estimate for RE Futures scenarios: < 3% of US land area
 o About half used for biopower
 o Majority of remainder for wind, but only about 5% is actually disturbed

<table>
<thead>
<tr>
<th>Gross Land Use Comparisons (000 km²)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomass</td>
<td>44-88</td>
</tr>
<tr>
<td>All Other RE</td>
<td>52-81</td>
</tr>
<tr>
<td>All Other RE, disrupted</td>
<td>4-10</td>
</tr>
<tr>
<td>Transmission & Storage</td>
<td>3-19</td>
</tr>
<tr>
<td>Total Contiguous U.S.</td>
<td>7,700</td>
</tr>
<tr>
<td>Major Roads**</td>
<td>50</td>
</tr>
<tr>
<td>Golf Courses **</td>
<td>10</td>
</tr>
</tbody>
</table>

* USDA 2010, 2012 ** Denholm & Margolis 2008

• Siting issues:
 o Permitting processes vary with technology and location
 o Wildlife and habitat disturbance concerns
 o Public engagement for generation and transmission—landscape, noise
Summary of Key Analysis Results

• Renewable electricity generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050, while meeting electricity demand on an hourly basis in every region of the country.

• Increased electric system flexibility is needed to enable electricity supply-demand balance with high levels of renewable generation, and can come from a portfolio of supply- and demand-side options, including flexible conventional generation, grid storage, new transmission, more responsive loads, and changes in power system operations.

• The abundance and diversity of U.S. renewable energy resources can support multiple combinations of renewable technologies to achieve high levels of renewable electricity use, and result in deep reductions in electric sector greenhouse gas emissions and water use.

• The direct incremental cost associated with high renewable generation is comparable to published cost estimates of other clean energy scenarios. Improvement in the cost and performance of renewable technologies is the most impactful lever for reducing this incremental cost.

• Future Work Needed: Comprehensive cost-benefit analysis; Power system reliability; Institutional challenges; Accelerating technology advancements
Distribution System Integration

- Modeling, Simulation & Optimization
- Advanced Components, Controls & Interoperability
- Communications & Database Architecture
- Protocols, Codes & Standards
- Business Case, Demonstrations, Risk & Valuation

http://apps1.eere.energy.gov/grid_integration_workshop/distribution.cfm
http://apps1.eere.energy.gov/grid_integration_workshop/transmission.cfm
Clean Energy to Secure America’s Future

“We have a choice. We can remain the world's leading importer of oil, or we can become the world's leading exporter of clean energy. We can hand over the jobs of the future to our competitors, or we can confront what they have already recognized as the great opportunity of our time: the nation that leads the world in creating new sources of clean energy will be the nation that leads the 21st century global economy. That's the nation I want America to be."

– President Obama,
Nellis Air Force Base,
Nevada, 5/27/09
A Transformation of the U.S. Electricity System

http://rpm.nrel.gov/refhighre/dispatch/dispatch.html

- RE generation from technologies that are commercially available today, in combination with a more flexible electric system, is more than adequate to supply 80% of total U.S. electricity generation in 2050—while meeting electricity demand on an hourly basis in every region of the country.
- The abundance and diversity of U.S. renewable energy resources can support multiple combinations of renewable technologies to achieve high levels of renewable electricity use, and result in deep reductions in electric sector greenhouse gas emissions and water use.

For more information
http://www.eere.energy.gov
Sam.Baldwin@ee.doe.gov