EDITOR’S PROFILE of this issue
from a historical perspective ...
with Paul Wesling, SF Bay Area Council GRID editor (2004-2014)

October, 1959:
Cover: USA vice-president Richard Nixon and USSR chairman Nikita
Khrushchev meet at the American National Exhibition in Moscow to
look at a replay of their videotaped meeting, using Ampex equipment
(page 10). Both seem delighted as they watch the color playback.
Page 6: Now that the Section has 14 groups (chapters), their monthly
AdCom meetings are too long and involved. The decision is to
standardize the professional group issues/discussions. A professional
group committee will take on that task, and meet once each year (or
maybe more) to address issues. Then the ExCom can address non-
group matters, such as the budget, relationships, etc.
Page 6: There is no Section office in Palo Alto yet; the Section’s offices are
shared with WEMA’s offices in San Mateo.
Page 8: The Electronic Computers group has Jay Last as its speaker. He is
one of the “traitorous eight” that left Shockley to form Fairchild. He
speaks on the recently invented “Micro-miniature Silicon Circuits”
today known as ICs) and gives a plant tour at Fairchild’s main plant.
Page 12: David Steinberg, head of purchasing at Lenkurt Electric, talks on
the tasks involved in purchasing of electronics parts. When I worked
at Lenkurt (1968-1970), I’d sometimes go to Dave’s office for fatherly
advice as I was starting my career.
Page 22: Charles (Bud) Eldon, of Hewlett Packard, runs for VP of the
Production Techniques group (predecessor to today’s EPS chapter); his bio lists two degrees from Stanford. He goes on to
be Region 6 Director for IEEE, and IEEE president in 1985. He recorded an oral history for IEEE’s History Center.
Page 30: Sylvania discusses plans for new buildings. The groundbreaking ceremony for their Mountain View building includes
Fred Terman (page 31).
VARIAN ASSOCIATES

HIGH FREQUENCY STABILITY, RUGGED CONSTRUCTION, LONG LIFE

The new VA-210B Klystron is a new, rugged oscillator, engineered to give long, reliable service under severe operating conditions. Frequency is extremely stable, even under conditions of the most severe shock, vibration and temperature variation. Features include a unique brazed-on external tuning cavity, a very rugged, quick-heating cathode, a slow-rate non-microphonic tuner and an all metal and ceramic construction.

Varian makes a wide variety of Klystrons and Wave Tubes for use in Radar, Communications, Tests and Instrumentation, and for Severe Environmental Service Applications. Over 100 are described and pictured in our new catalog. Write for your copy.

VARian ASSOCIATES
Palo Alto, California

Representatives throughout the world.

KLYSTROnS, TRAVELING WAVE TUBES, FORWARD WAVE OSCILLATORS, LINEAR ACCELERATORS, MICROWAVE SYSTEM COMPONENTS, R.F. SPECTROMETERS, MASHERS, MAGNETOMETERS, STALOS, POWER AMPLIFIERS, GRAPHIC RECORDERS, RESEARCH AND DEVELOPMENT SERVICES

2—GRID
NOW . . . from PERKIN - "TRANSIENT FREE" D. C. POWER IN A
VERSATILE WIDE VOLTAGE RANGE D. C. POWER SUPPLY

AT LAST!! — A POWER SUPPLY WITH PRECISE
REGULATION THAT IS UNAFFECTED BY LINE AND
LOAD TRANSIENTS . . . INSTANTANEOUS CHANGES IN
LINE AND LOAD WILL NOT CAUSE TRANSIENT
VOLTAGE "SPIKES" IN THE D. C. OUTPUT.

SPECIFICATIONS

D. C. OUTPUT: 0.36 Volts @ 15 Amperes
0.36-125 Volts, 1 phase, 60 cps
105-15 Volts, 1 phase, 60 cps
Line: ±10 MV; Load: ±10 MV
Line: ±25 MV; Load: ±25 V. No Load to full load
& FL to NL
2 MV RMS Maximum
50 Milliohms (0 CPS to 20 KC)
Short Circuit Proof — Automatic Current Limiting at 18
Amperes. (Short Circuits and Overloads can be sustained
indefinitely without damage to the power supply.)
Approximately 125 Lbs.
15° W x 15° D x 10½” H (Rack panel mount)

Through the use of a special combination magnetic
amplifier-transistor circuit and conservative design tech-
niques, this power supply provides full load output even
in the case of a transistor failure.
FEATURING

- Standard Cell Reference
- 500 Microvolt Resolution
- .1% Calibration Accuracy
- .005% Regulation

LABORATORY or PRODUCTION LINE, the JOHN FLUKE Models 301C and 301E will satisfy the most exacting requirements. They are very conservatively rated and will deliver continuous full power with absolutely no distorting. Compact, rugged units of incomparable performance, they stand alone in their field.

MODEL 301C
1.02-1012 V.D.C.

OUTPUT VOLTAGE 1.02—1012 V.D.C.
OUTPUT CURRENT 0-400MA
REGULATION005%
STABILITY005%
RESOLUTION 500 Microvolts
READOUT From Calib. controls
SIZE 17½"x19" Wx15½"D
PRICE $985 F.O.B. Seattle, Wash.

Net Weight: 120 pounds

MODEL 301E
1.02-512 V.D.C.

OUTPUT VOLTAGE 1.02 to 512 V.D.C.
OUTPUT CURRENT 0-300MA
REGULATION005%
STABILITY005%
RESOLUTION 500 Microvolts
READOUT Direct In-Line
SIZE 8½"Hx19"Wx15½"D
PRICE $595 F.O.B. Seattle, Wash.

Net Weight: 37 pounds

FOR MORE INFORMATION / write direct or contact our engineering representative in your area.
IN THIS ISSUE

Remarks from the Chairs .. 6
Meeting Calendar .. 8
Meetings Ahead (PGME, PGPT) .. 10
Electronic Women ... 12
Meeting Reviews ... 12
PGSET National Symposium Report ... 14
Election News
PGED ... 16
PGEM ... 18
PGME ... 18
PGMTT ... 20
PGPT ... 22
PGSET ... 23
Events of Interest .. 26
Grid Swings .. 28
Membership Status .. 34
Manufacturers Index ... 38
Index to Advertisers .. 38
About the Cover ... 10

The GRID is published by the San Francisco Section of the Institute of Radio Engineers monthly except for July and August.
Please send all Form 3579 to:
Editorial and circulation office: P.O. Box 966, San Mateo, California
Subscription: $1.00 (members); $2.00 (non-members) per annum.
Office of publication: 394 Pacific Ave., Fifth Floor, San Francisco, Calif.
Second-class postage paid at San Francisco, California.
Meetings and Professional Groups

One of the principal functions of the San Francisco Section is that of holding meetings adapted to the needs of its members. We have divided the responsibility for organizing these meetings by professional group and there are now 14 professional groups in our Section plus the East Bay Subsection. This set of groups will probably hold about 100 meetings during the coming year. Just because a lot of people don't recognize some of these groups when they see their initials, I have included at the end of this commentary a list of the groups (and their initials) that are active in our section.

We are going to try to get the professional group part of our section operating in a reasonably standardized fashion by the end of the coming year. In future years we hope it will be a little easier for the new officers of each group to know what they are supposed to do in order to comply with the requirements of the national organization, to get money from the Section, and to make use of the services that are available to them from the section. We are going to try to provide a more or less standardized set of services to any group that wishes them through the IRE-WEMA office in San Mateo. During the course of the next few months I will be issuing some memos to the chairmen of these groups to clarify some of these matters.

As Vic Corey stated in his editorial in last month's Grid, a professional group committee has been formed within the executive committee of the Section to deal with problems of the professional groups. This group will have as its chairman the Section vice chairman and, as a permanent member and secretary, the Section professional group coordinator. This committee normally will have at least one meeting at the beginning of the year to set a tentative meeting schedule for the year. Our meeting schedule for the coming year was listed in last month's Grid following the directory of officers. We will probably have more meetings of this committee during the coming year, but no definite pattern for the future yet exists.

Generally speaking, one of the major jobs we hope to perform at the Section level in the future is a job of communications. Insofar as possible, we would like to avoid having two meetings that one person would like to go to on the same night. Since we try to hold most of our meetings on Tuesday night, we have to be reasonably careful in planning the schedule. There are a lot of other professional societies in the Bay Area that hold meetings on subjects of interest to IRE members and their meetings are brought to your attention, as a Section member, by means of the "San Francisco Engineer." Hopefully, we have meeting-planning coordination both among our professional groups and with those societies that are likely to have meetings we would be interested in, as IRE members. An objective is to end up with joint sponsorship of all meetings that are of special interest to more than one group, in preference to holding more than one meeting either on the same subject or with the same speaker.

All of this coordination can't occur unless the individual group program chairmen cause it to occur. I believe it will be worthwhile in the long run in causing fewer, better meetings than would otherwise be the case.

—Don Dunn, vice chairman, SFS

PGAP—Professional Group on Antennas & Propagation
PGA—Professional Group on Audio
PGB—Professional Group on Broadcasting
PGCS—Professional Group on Communications Systems
PGED—Professional Group on Electronic Devices
PGEC—Professional Group on Electronic Computers
PGEM—Professional Group on Engineering Management
PGEWS—Professional Group on Engineering Writing & Speech
PGME—Professional Group on Medical Electronics
PGMT—Professional Group on Microwave Theory & Techniques
PGMI—Professional Group on Military Electronics
PGPT—Professional Group on Production Techniques
PGRC—Professional Group on Reliability & Quality Control
PGSET—Professional Group on Space Electronics & Telemetry
NEW LEVELS OF PROFESSIONAL ACHIEVEMENT... on important data processing projects at the new IBM Laboratories in San Jose, Calif.

You are cordially invited to discuss key positions open at our new facilities at San Jose, California, where original work is being undertaken in digital computer research and development.

ELECTRONIC ENGINEERS:
CIRCUIT DESIGN—transistors, cores and other solid state devices in: logic elements, small signal applications, drivers for mechanical or magnetic devices.

COMPONENT DESIGN—creative studies of phenomena associated with: magnetic heads, core logic, thin films and surfaces.

SYSTEM PLANNING—application and system requirements in: communications, facsimile recording, digital data handling, magnetic and photo memory.

MECHANICAL ENGINEERS:
MECHANISM DESIGN—high-speed, complex devices used in: memory access, input-output elements, card and tape handling mechanisms, hydraulic servos.

PHYSICISTS:
SOLID STATE—explore phenomena of: electroluminescent devices, photoconductor devices, special transistor devices.

OPTICS—photometric, high-resolution photo techniques in high-performance optical systems.

You will enjoy agreeable living and working conditions at San Jose, a modern town with good schools and a pleasant, healthful environment. You will receive exceptional employee benefits and enjoy excellent job stability. Moving and travel expenses will be paid.
MEETING CALENDAR

PROFESSIONAL GROUPS

Antennas & Propagation

"A VLF Satellite Experiment"

- **Speaker:** Professor R. A. Helliswell, electrical engineering department, Stanford University
- **Place:** Physics Lecture Hall, Stanford University
- **Meet-the-speaker dinner:** 6:30 P.M. (Happy Hour: 6:00 P.M.), Hal’s Restaurant, 4085 El Camino Way, Palo Alto

Reservations: Mrs. Lames, DAvenport 1-3300, ext. 365

8:00 P.M. • Tuesday, October 13

(Joint meeting with PGSET)

The Argus Experiment

- **Speaker:** N. C. Christofilos, Lawrence Radiation Laboratory, University of California, Livermore
- **Place:** Physics Lecture Hall, Stanford University
- **Meet-the-speaker dinner:** 6:30 P.M. (Happy Hour: 6:00 P.M.), Hal’s Restaurant, 4085 El Camino Way, Palo Alto, Calif.

Reservations: Mrs. Lames, DAvenport 1-3300, ext. 365

8:00 P.M. • Tuesday, November 10

Electronic Computers

- **Speaker:** Dr. Jay Last
- **Place:** Fairchild Semiconductor Co.—Main Plant, 545 Whisman Road, Mountain View, Calif.

7:30 P.M. • Tuesday, October 27

Engineering Management

- **Discussion and tour of Bell System office**
- **Speaker:** Lloyd Cornell, general engineering and construction supervisor, Pacific Telephone & Telegraph Co.
- **Place:** Pacific Telephone & Telegraph Co., San Francisco, Calif.

8:00 P.M. • Tuesday, October 13

Medical Electronics

8:00 P.M. • Tuesday, October 27

"The Nervous System and Automatic Control—Similarities and Differences"

- **Speakers:** Gene F. Franklin, PhD, associate professor of electrical engineering, Stanford University; Enoch Callaway, III, M.D., chief of research at Longley Porter Neuropsychiatric Institute, San Francisco; Karl H. Pribram, M.D., associate professor of psychiatry and psychology, Stanford University.
- **Place:** Room M 112, Medical Science Building, Palo Alto-Stanford Medical Center, Stanford, Calif.

Microwave Theory & Techniques

8:00 P.M. • Tuesday, October 20

"The Tunnel Diode"

- **Speaker:** Herbert Krämer, Varian Associates
- **Place:** Physics Lecture Hall, Stanford University
- **Dinner:** 6:00 P.M., Hal’s Restaurant, 4085 El Camino Way, Palo Alto

Reservations: Mrs. Val Pakaski, DAvenport 6-4000, ext. 302

8:00 P.M. • Tuesday, November 3

Production Techniques

8:00 P.M. • Tuesday, October 27

"Painting and Finishing"

- **Speakers:** Gene Dodge, vice president of Tekco company, Sunnyvale; Dr. Sidney Simon, chief chemist of Rhino Tech Company, Santa Clara; and Roy Koren, president of Dodge-Koren Co., South San Francisco
- **Place:** Room 100, Physics Lecture Hall, Stanford University

Space Electronics & Telemetry

8:00 P.M. • Tuesday, November 10

(Joint meeting with PGAP, see above)

CHRONOLOGICAL RECAP

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 13</td>
<td>Antennas & Propagation, Engineering Management</td>
</tr>
<tr>
<td>October 20</td>
<td>Microwave Theory & Techniques</td>
</tr>
<tr>
<td>October 27</td>
<td>Electronic Computers, Medical Electronics, Production Techniques</td>
</tr>
<tr>
<td>November 3</td>
<td>Military Electronics</td>
</tr>
<tr>
<td>November 10</td>
<td>Antennas & Propagation/Space Electronics & Telemetry</td>
</tr>
</tbody>
</table>
NATO SELECTS EIMAC KLYSTRONS TO POWER EUROPE'S LARGEST TROPO-SCATTER NETWORK

One and ten kilowatt amplifiers in NATO's continent-spanning tropo-scatter system will be Eimac Amplifier Klystrons. Since Eimac Klystrons first made large-scale tropospheric communications possible in 1954, they've become famous for reliability in all major tropo-scatter networks: Pole Vault, Dew Line, Texas Towers, White Alice, Florida-Cuba TV. Individual Eimac Klystrons have logged more than 35,000 hours continuous air time in tropo-scatter service.

Exclusive design features make Eimac Klystrons outstanding for tropo-scatter. Extra-wide frequency tuning is achieved with one set of tuning cavities. Inductive tuning achieves uniform bandwidth plus greater broadbANDING by external cavity loading. Eimac's external cavity design lowers original cost, and replacement cost is lower since tuning circuitry is purchased just once.

One wide range load coupler covers the entire frequency range. Eimac's series connected body magnets permit use of one power supply, one control for body magnets.

Eimac Klystrons will be used in NATO installations. Proved Eimac reliability will aid in safeguarding the security of all free European nations.

EITEL-MCCULLOUGH, INC.
San Carlos • California
ABOUT THE COVER

Moscow Hit: Videotape

This cover is a sequel to the celebrated Videotape debate between the Russian Premier and the American Vice President in the American National Exhibition at Moscow. It shows the reaction of the two men to seeing themselves in immediate color playback on the Ampex equipment. SFS Member Phil Gundy, Ampex vice president, is at left. William Barnhart, at right rear, is one of the Ampex engineers who made the trip. Others were Glen Pew and Joe Roizen.

The Grid's reporter in Moscow was Jack Miller, Ampex shows manager, who supplied notes on the exhibit.

Meanwhile, back in Redwood City, the man who started it all, Alex M. Poniatoff, right, Ampex board chairman, shares flying reminiscences with Air Force Major General S. T. Wray, a recent visitor.

Russians attending the fair (nearly three million) voted the color TV studio (including the Ampex recorder) their favorite exhibit—topping the American automobiles.

The studio was erected in the main exhibition hall and intended primarily to show off the equipment. It was here that Premier Khrushchev and Vice President Nixon held their famous studio encounter. Just as Khrushchev was delighted with the quick playback of the Ampex color tape recording, so were thousands of other Russians subsequently.

Original plans fell apart when it became impossible to get Soviet artists to perform in the studio. Miller and the television men turned to what talent they could find among the guides and other American exhibition personnel. Numerous sewing-machine demonstrations, cooking exhibitions, and similar bits were televised and played back for the curious Russians.

One guide sang cowboy songs in Russian. He also left a bag full of award ribbons from the Baytown, Texas, Fair. This inspired the studio people to hold a game of musical chairs for the Russian children. Both the youngsters and crowd of onlookers responded enthusiastically. Subsequent repeats of the games before the cameras proved the biggest audience draw of all.

Mustache contests on-camera also were very popular. An applause meter determined the winner among the various contestants. One young fellow said it had taken 21 years to grow his wispy mustache. Seems he had never shaved it in his life. One winner, a grand old-timer with handlebars that would have served him well in the wild west, was asked for his advice to young aspiring mustache growers. "Don't shave," he said. "Oh, yes, and use a little spit."

A program which appealed to the Russian women was the use of eight novelty wigs. The last one was a rainbow-colored hairdo which completely stumped and delighted them.

As Videotape stands now, 142 television stations are equipped, as well as numerous independent producers including Red Skelton. But Red Khrushchev and his colleagues cannot presently qualify to place an order under our export regulations.

MEETING AHEAD

Nervous Automation

Besides getting a chance to examine the new medical science building of the Stanford Medical Center at Stanford, those who attend the October 27 meeting of PGME will hear a group of three speakers comparing and contrasting the human nervous system with automatic control. See "Meetings Calendar" for details.

Selected to give broad coverage of the subject, the speakers have the following special interest; Franklin—automatic control systems, Callaway—neuropharmacology and Pribram—neurosurgery and neurophysiology.

MEETING AHEAD

Cosmetic Aspects

Painting and finishing of equipment will be the topic of the night of October 27 when the Professional Group on Production Techniques will meet at a place and time detailed in "Meeting Calendar." Three speakers will appear (Continued on page 12)
How to be sure of **TOP QUALITY** Nickel-Iron Laminations for high performance motor and transformer applications

The easiest way to get top value is to specify Repath laminations. Why? Because their manufacture is quality controlled from start to finish.

Take annealing for example. This operation is most important because it develops the ultimate permeability of the lamination. Repath laminations are hydrogen annealed in modern globar heated Inconel retort furnaces.

Very dry hydrogen (−40°F dew-point and lower) is used to insure clean lamination surfaces, and to remove impurities from the steel for better performance and higher magnetic properties. Electronic cam-type program controllers control the entire annealing cycle. Following annealing, all Repath laminations are tested for permeability and core loss by permeameters in the laboratory prior to packaging and shipping.

This emphasis upon modern, well-maintained equipment, plus the experience, care and skill which is applied to each customer's requirements, is your assurance of uniformity and dependability in finished laminations.

Specify Repath's nickel-iron laminations for high frequency applications where high permeability and very low core loss are required. They're available in a wide range of standard shapes and sizes. Also available: a complete line of silicon steel laminations.

WRITE FOR THE REPATH CATALOG

This 54 page booklet contains complete specifications and detailed drawings of all standard Repath nickel-iron and silicon steel laminations. Also illustrates line of stamped metal components for electronics.

ADDRESS DEPT. G-910-R

REPATH PACIFIC DIVISION

ARNOLD SPECIALISTS in MAGNETIC MATERIALS

THE ARNOLD ENGINEERING COMPANY, Main Office: MARENGO, IIL. LOS ANGELES Office: 3450 Wilshire Blvd. • Telephone Dunkirk 8-0361

OCTOBER 1959
MORE COSMETIC
and each cover his particular area of interest as follows: Dodge on electroplating, Simon on organic finishes, and Koren on water-dispersed coatings.

DISTAFF SIDE

WAEI & Purchasing

David Steinberg, purchasing manager of Lenkurt Electric Co., will speak on “Purchasing in Electronics” at the October 19 meeting of the Women’s Association of the Electronics Industry. The association’s dinner meeting at 7:15 P.M. at The Old Plantation, Los Altos, will be preceded by a social hour.

Steinberg, who has been with Lenkurt since 1957, is one of the area’s authorities on electronic purchasing. Previously, he was purchasing agent for the electronics division, Fairchild Controls Corp., Syosset, New York, and purchasing agent for the Freed Electronics and Controls Corp., New York.

The purpose of the WAEI is to bring together a group of women with a common interest in the field of electronics. Included in this group, representing 34 Bay Area firms, are: executive secretaries, engineers, purchasing agents, personnel directors, draftsmen, technicians, assembly workers, etc. All women employed in electronics, in any capacity, are invited to join. Further details may be had by calling Jo Thompson at DAvenport 5-4451.

MEETING REVIEW

Work with Words

In a joint meeting of the PGRQC and PGEC on Tuesday, September 29, Dr. Louis Fein, a consultant in the fields of computers and reliability, presented a paper on “The Construction of a Glossary of Technical Terms.” Fein stated that the number of words in a particular language is a measure of the development of the culture of the society using the language. This notion was compared to primitive peoples and their use of language; it was a mature and well-defined field as physics; and to the newer, less well-defined fields such as computer and reliability technology.

In his well-thought-out and splendidly presented paper, Fein said that the construction of an adequate and coherent glossary requires a prior knowledge of the field just as fundamental knowledge of the English language is a prerequisite to writing an English dictionary.

The point was well established by a model “system” which was broken down functionally into sub systems, processes, operators (both human and machine), components, and parts (and materials). Fein suggested, for example, that a cessation of operation in a part might be called a “failure,” that an accuracy of an operator (whether machine or human) might be called a “mistake,” and that other terms which mean “failure” should be applied to other specific levels of the system model.

Another requirement of an adequate glossary was said to be standardization of the format of the “article” of each definition in the glossary much in the same manner in which this is done in dictionaries. An example of such an “ordered article” might include: the name of the element, the part of speech, the etymology, the definition of the word, and synonyms and antonyms appropriately.

A four-man panel which discussed Dr. Fein’s paper in some detail consisted of Dr. Harry Romig, director of Hoffman Laboratories; Dr. Ben Epstein, professor of mathematics at Stanford University; Bill Wahrhaftig of Philco Corporation; and Hyman Olken of the Lawrence Radiation Laboratory at Livermore.

It was concluded that much work is yet to be done in the establishment of an adequate glossary of terms in the field of reliability. This reporter, who was moderator for the evening, stated that people are needed to serve on a joint IRE, ASQC, AIA, EIA, and DOD committee on definitions in the San Francisco Bay area. Those interested in contributing to this work should contact him at the Dalmo Victor Company, phone LYTell 1-1414.

—John Hall

MEETING REVIEW

Russia: Square vs Round

The first meeting of the PGEC for 1959-1960 was held at SRI September 22. Members and guests were invited to bring their wives to hear Mort Astrahan report on his trip to the USSR last spring.

Dr. Astrahan, who was the first chairman of PGEC, 1951 to 1953, is manager of systems development of the advanced systems development division laboratories at IBM, San Jose. He has

(Continued on page 14)
Sometimes forgotten during the thundering ascent of a space probe rocket are months of meticulous analysis, engineering and planning. The staff of Space Technology Laboratories is now engaged in a broad program of space research for the Air Force, the National Aeronautics and Space Administration and the Advanced Research Projects Agency under the direction of the Air Force Ballistic Missile Division. For space probe projects STL provides the total concept approach, including preliminary analysis, sub-system development, design, fabrication, testing, launch operations and data evaluation. The total task requires subtle original analysis in many fields as well as sound technical management.

The STL technical staff brings to this space research the talents which have provided system engineering and technical direction since 1954 to the Air Force Ballistic Missile Program. Major missile systems currently in this program are Atlas, Titan, Thor and Minuteman.

The scope of STL's responsibilities offers creative engineers, physicists and mathematicians unusual opportunities to see their ideas tested in working hardware. Inquiries are invited regarding staff openings in the areas of Advanced Systems Analysis, Rocket Propulsion, Space Flight Mechanics, Dynamics, Structural Analysis, and Aerodynamics.

Space Technology Laboratories, Inc.
P. O. Box 95004, Los Angeles 45, California
End of Orbit

At its apogee, the recent National Symposium on Space Electronics & Telemetry had an attendance of 904 and 39 exhibitors utilizing 57 booth spaces. The affair wound up September 30 after having presented nine sessions of 41 papers, a luncheon, a banquet, and a reception and cocktail party. Social items were held in the Whitcomb Hotel, exhibits in the San Francisco Civic Auditorium across Market Street.

Speaking at the banquet on September 29, Dr. Robert Jastrow of NASA sketched out the scientific problems which exist in the areas of vehicle development, space technology, and space science. As a review he provided the recapitulation of major vehicle capabilities which accompanies this report.

After discussing the nature of the space around us and listing the types of experiments with appropriate instrumentation which are planned for the future, he described the activity which will possibly occur just before the time than man first sets foot on the moon: "The ultimate in unmanned exploration may be the remote-controlled roving vehicle. The use of this roving vehicle will enable us to get away from the perturbed conditions in the vicinity of the landing site produced by the blast from the retro-rockets. We will also avoid misleading impressions resulting from the analysis of data acquired at a limited number of sites whose conditions may not be representative of larger areas of the lunar surface. The roving vehicle will be capable of exploration over an extended area around the landing site for indefinite periods of time. It will be powered by solar cells, and during each fortnightly, long lunar day it will crawl slowly over the lunar surface, collecting data samples and analyzing local conditions as it proceeds; it will hibernate during the lunar night, and come to life again at each lunar dawn. "Although we talk in a matter-of-fact fashion about these projects, it is actually an extremely formidable problem to construct a reliable vehicle for (Continued on page 16)"

—Henry L. Herold

MAJOR SPACE-VEHICLE CAPABILITIES

Existing Vehicles.

JUPITER C: Redstone booster with Sergeant clusters in the upper stages; used for the first Explorer satellites with a payload of about 15 pounds.

JUNO II: Jupiter booster and Sergeant clusters in the upper stages; used for the pioneer space probes, the heavy IGY satellite, and for coming satellites in the upper atmosphere program; having a capability of 80 pounds in a 1000-mile-satellite orbit.

THOR-ABLE: Thor booster with modified Vanguard second stage and solid propellant 3rd stage, used for the first Pioneer space probe, and the 3T3 space probe; having a payload of approximately 300 pounds in a 300-mile satellite orbit.

Advanced Stages of Development (available soon)

SCOUT: All solid, 200 pounds in a 300-mile orbit; relatively inexpensive, the workhorse vehicle for upper atmosphere studies.

THOR-Delta: Improved version of the Thor-Abel with superior guidance; 300 pounds in a 300-mile orbit; or 65 pounds gross payload to the moon.

ATLAS-ABLE: Similar to the Thor-Abel, with Atlas boosters in place of Thor; 300 pounds to the moon.

Nuclear rockets offer larger payloads, perhaps 3 times those mentioned above, but on a longer time scale. Note that the clustered rockets give reliability and safety; the SATURN will maintain close to full thrust with

Vehicles in an Intermediate Stage of Development

(2 to 3 years from now)

VEGA:
Atlas booster, modified Vanguard first stage for the second stage, new JPL third stage; will place 4000 pounds in a 300-mile orbit or bring 700 pounds to the moon.

CENTAUR: (Advanced Vega) Similar to the Vega but with high energy (lithium-deuterium) second stage roughly doubling payload; will bring 1500 pounds gross weight to the moon, or 300 pounds net weight available in soft landing.

Advanced Vehicles in Preliminary Stage of Development

(4 to 8 years from now)

SATURN (ABMA): A cluster of 8 improved Rocketdyne engines to give 1.5 million pounds of thrust; will bring 4 tons to the Moon, and 1 ton net weight for instrumentation in a soft lunar landing; also manned circumnavigation of the Moon.

NOVA: Cluster of million pounds engines to give 6 to 8 million pounds of thrust; will bring 10 tons to the moon, sufficient for manned flight, a lunar landing and return; also 75 tons in a 300-mile orbit, sufficient for manned space laboratories.

MORE PGEC

been with IBM since 1949 and was sent by them to investigate Soviet computer technology and also to visit the computer conference in Paris.

Since there was such a good turnout of women, including his wife, Astrahan directed the talk toward his general impression of Russia. He showed many excellent 35-mm color slides he photographed in Moscow, Leningrad, Kiev, and a smaller city, Penso. Astrahan's wife, Joanne, also made the trip and she very good-naturedly did not let her husband deliver any misinformation. They also showed movies and during one reel that had been double-exposed by mistake both of them talked at once to explain the two superimposed pictures.

The city of Penso (population: about 250,000) is not open to tourists but since their party was promised a visit to a computer factory, they were allowed in. The color slides taken there, where all facilities are much less elaborate, were particularly interesting.

Astrahan reported that the Russians up to now have concentrated exclusively on scientific computers at the expense of business data processing. Their computers are logging ours in speed, and particularly in input-output equipment such as magnetic tape. Apparently they have no transistorized computer in production yet.

They are working on language translation and information retrieval programs but do not seem to have advanced as far as some Americans had been led to believe. There are many groups in Russia working quite independently on computers and each group tries hard to justify its budget. They have the same old computer-language standardization problems; some punch round holes in cards, some square, etc.

14-GRID

OCTOBER 1959
Opportunities at Hughes in microwave research and development

Modern electronic systems demand a broad range of technical competence. The Hughes Microwave Laboratory has unusually extensive capabilities in the antenna, microwave component, and radome fields. Its activities are co-ordinated in a balanced program of fundamental research, development, design and production engineering.

Antenna Research—Included in current studies are: electronic scanning, its information transfer functions, and its relationship to system performance; surface waves and conformal surface antennas potentially useful on nose cones or low silhouette applications; and the theoretical aspects of transmission through small radomes.

Electronics Research—These investigations are concerned with basic phenomena such as amplification, harmonic generation, limiting and switching with ferromagnetic and dielectric materials, and superconduction in thin films at microwave frequencies.

Materials Research—In the field of Solid State Chemistry and Physics, studies are directed toward the synthesis and characterization of organic and inorganic compounds; new polymer systems; structural and electronic ceramics; and ferroelectric, ferrimagnetic and paramagnetic materials for electronic applications.

Microwave Engineering—the products of research are converted into advanced components, processes, and techniques for ultimate system application. Novel antennas, radomes, filters, and ferrite devices are being developed for the entire microwave and UHF spectra. New materials and processes are exploited for the production of ferrites and garnets, silicone plastics, ablative materials, high-temperature insulating and encapsulating materials, and electroluminescent panels. Research and engineering ideas are rapidly embodied in concrete forms through the facilities provided by a versatile design staff and a well-equipped shop.

Openings exist in each of the above areas. These positions offer excellent opportunities for qualified personnel in the fields of Physics, Chemistry and Engineering (Electrical—Microwave—Mechanical).

Please write: Mr. R. A. Martin, Supervisor, Scientific Employment
Hughes Research and Development Laboratories
R and D Personnel Department, Culver City 19, California
ELECTION NEWS

Professional Group on
Electron Devices

Robert A. Craig, Stanford Microwave Laboratory, chairman. Craig attended Montana State College and received his BS degree in EE in 1949. For his graduate study he came to Stanford University as a teaching and research assistant in the electronics and microwave laboratories. Here he was awarded MS and Engineer degrees in EE, and in 1951 became a research associate in the microwave laboratory where he was concerned with research on high-power traveling-wave tubes. In 1955 he received his PhD in EE.

In 1954 Craig joined the General Electric Microwave Laboratory in Palo Alto, and was subsequently engaged in the development of high-power traveling-wave tubes. He returned to Stanford as research associate in the Microwave Laboratory in September, 1958. He is a member of Tau Beta Pi, Phi Kappa Phi, and Sigma Xi.

Joseph F. Hull, vice chairman, PGED

Dr. Jules Needle, Sylvania, treasurer. Dr. Needle did his undergraduate and graduate work at the University of Michigan and received the PhD degree in electrical engineering in 1951. From 1942 to 1955 he was successively instructor and assistant professor in the

(Continued on page 18)

H. John Shaw, Stanford University, secretary. Shaw is a senior research associate in the microwave laboratory at Stanford University and a research associate in the physics department. A native of Seattle, Washington, he obtained his BS degree in electrical engineering from the University of Washington in 1941 and his MA and PhD degrees in electrical engineering from Stanford University in 1942 and 1948, respectively.

H. John Shaw, secretary, PGED

Obviously there were subjects funnier than man’s exploration of outer space to engage the attention of NSSET committee members. Here one of these subjects is shared by Mrs. Robert DeLiban; Robert Grimm, exhibits and arrangements chairman; Robert DeLiban, publicity chairman; Robert Rawlins, national chairman; and George Larse, technical program chairman.

MORE NSSET

roving over the surface of the moon under conditions which cannot be known too well beforehand, performing physical and chemical tests as it proceeds under remote control by a terrestrial operator a quarter of a million miles away. The engineering problems involved in the development of such a vehicle cannot be underestimated. A great deal of study and testing will be necessary before we can feel confident in our ability to carry out such projects, but the program is a very important one and we are going to move ahead as fast as hard work will enable us to.”

NEIGHBOR SECTIONS

Hawaii

For its September meeting, the Hawaii Section scheduled a paper titled “Problems in Reception of Signals from Space Satellite Vehicles” by Elmer Harger, Jr., assistant in physics at the University of Hawaii.

Robert A. Craig, chairman, PGED

Joseph F. Hull, Litton Industries, vice chairman. Hull attended the University of Wisconsin, receiving there the BS in electrical engineering in 1943. During the war he carried on research at the General Electric Research Laboratory under the sponsorship of OSRD.

In 1945 he was assigned to the thermionics branch of the Signal Corps engineering laboratories at Fort Monmouth, New Jersey, and between 1946 and 1955, was employed in the same laboratory as a civilian engineer in charge of microwave-tube research and development. In 1951, he received an MS in electrical engineering from Rutgers, and in 1958 a Doctor of electrical engineering from the Polytechnic Institute of Brooklyn.

Hull joined Litton Industries in San Carlos in 1955, and his present posi-
MEASURE TIME; 0.1 μsec ACCURACY!

hp 218AR Digital Delay Generator produces crystal controlled pulses accurately spaced in time. It is a perfect slave to any pulse, even though random, and locks in constant phase during each counting period.

Time measurement and pulse simulation in radar, loran, Tacan, DME, oscilloscopes, computers, fast gates, pulse code systems—almost any kind of time measurement single- or double-pulse simulation is now yours quickly and accurately with hp 218AR Digital Delay Generator.

Built along strict military standards, hp 218AR uses a pulsed crystal oscillator synchronizable in constant phase with an initial trigger pulse (zero time) and two positive terminating pulses. Time is counted with a 1 Megacycle preset counter, and two independent output pulses are available in any relationship.

PULSE GENERATOR PLUG-INS
For utmost versatility, output pulses are generated in various arrangements by three plug-in pulse generators. These include hp 219A, supplying two positive pulses, hp 219B providing two pulses, each positive or negative and variable in amplitude, hp 219C, providing a high power pulse, positive or negative, digitally controlled as to delay and duration, variable in amplitude.

Condensed Specifications

<table>
<thead>
<tr>
<th>Time Interval Range:</th>
<th>1 to 10,000 μsec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy:</td>
<td>± 0.1 μsec ± 0.001%</td>
</tr>
<tr>
<td>Digital Adjustment:</td>
<td>1 μsec steps, full range</td>
</tr>
<tr>
<td>Interpolation:</td>
<td>Variable 0 to 1 μsec</td>
</tr>
<tr>
<td>Input Trigger:</td>
<td>Internal 10 cps to 10 KC; External 0 to 10 kc pulses, also sine wave</td>
</tr>
<tr>
<td>Jitter:</td>
<td>0.02 μsec or less</td>
</tr>
<tr>
<td>Recovery Time:</td>
<td>50 μsec or 10% of interval, whichever is greater</td>
</tr>
<tr>
<td>Sync Output:</td>
<td>500 v pos. pulse, 0.1 μsec rise time</td>
</tr>
<tr>
<td>1 MC Output:</td>
<td>1 v pulses, 500 ohm impedance</td>
</tr>
<tr>
<td>Price:</td>
<td>hp 218A, $2,000.00</td>
</tr>
<tr>
<td></td>
<td>hp 219A Dual Trigger Unit, $100.00</td>
</tr>
<tr>
<td></td>
<td>hp 219B Dual Pulse Unit, $450.00</td>
</tr>
<tr>
<td></td>
<td>hp 219C Digital Pulse Duration Unit, $350.00</td>
</tr>
</tbody>
</table>

Data subject to change without notice. Prices f.o.b. factory

HEWLETT-PACKARD COMPANY

CONTACT OUR ENGINEERING REPRESENTATIVES, NEELY ENTERPRISES, FOR INFORMATION—
Los Angeles, 3939 Lankershim Blvd., North H'w'd., TR 7-0721; San Carlos, 501 Laurel St., LY 1-2626;
Sacramento, 1317 Fifteenth St., GI 2-8901; San Diego, 1055 Shaffer St., AC 3-8106; Phoenix, 641 E.
Missouri Ave., CR 4-5431; Tucson, 232 So. Tucson Blvd., MA 3-2664; Albuquerque, 107 Washington St.,
S.E., AL 5-5586; Los Cruces, 126 S. Water St., JA 6-2486.

hp World leader in precision electronic counting

OCTOBER 1959
department of electrical engineering at the University of Michigan. He was later associate professor in electrical engineering and head of the electron tube laboratory at Northwestern University.

During the summers of 1953 and 1954 he was employed as a consultant by Sylvania Electric Products Inc. in both Massachusetts and Mountain View. He joined Sylvania on a full-time basis in 1958 as an engineering specialist at the company's special tube operations in Mountain View. He was later promoted to head of the tube research and development branch of the research and engineering department, the position he now holds.

Needle is a Senior Member of the IRE and past consultant to the IRE sub-committee on operating measurements of microwave oscillator tubes. He is also a member of PGMTT. He holds membership in Sigma Xi, Phi Kappa Phi, and Eta Kappa Nu.

Professional Group on Engineering Management

Allen S. Dunbar, Lockheed Missiles and Space Division, chairman. Dunbar is assistant manager of the Electromagnetics Department at Sunnyvale. Previously he was manager of advanced technical planning at Delmar Victor Company. He has also been with Stanford Research Institute, the Naval Research Laboratory in Washington, and the Radiation Laboratory at MIT.

His AB in physics from Clark University, Worcester, Mass., has been followed by graduate studies in physics at the University of Maryland. He is a member of the American Physical Society.

Oscar T. Simpson, Philco Corporation, vice chairman. As general manager of the Western Development Laboratories, Simpson directs all activities—technical and administrative.

Previously he has been executive engineer in Philco's research division, directing work on radar, microwaves, missiles, infrared, weapons systems, and fuzing and display devices.

Born in Akron, Ohio, in 1918, he obtained both his BS and MS in physics from the University of Akron.

Wilbur S. Chaskin, ITT Laboratories, secretary-treasurer. Chaskin, a native of Boston, attended Polytechnic High School in San Francisco and received his technical education by various extension courses, including the University of California.

Of his 20 years of experience in the development and production of radio and communication equipment, 10 have been with Lenkurt Electric Co. in various phases of carrier development.

Since 1956, he has been director of the Palo Alto research and development facility of ITT Laboratories, a division of International Telephone and Telegraph Corp. He is a member of AIEE.

Professional Group on Medical Electronics

George K. Turner, G. K. Turner Associates, chairman. Turner is president of the scientific-instrument manufacturing concern bearing his name. Formerly chief electronics engineer in the Spino Division of Beckman Instruments, he obtained both his BS and EE from Massachusetts Institute of Technology.

He has also been a senior engineer in the military electronics division of Hycon Manufacturing Co., Pasadena; works manager of the Alabama Engineering and Tool Co., Huntsville, Alabama; supervisor of the systems engineering unit of North American Aviation at Downey; project engineer at Consolidated Electrodynamics Corp., Pasadena; and a radar maintenance officer in the U. S. Navy.

He holds membership in Sigma Xi and the Naval Research Reserve.

Mark S. Blumberg, M.D., Stanford Research Institute, vice chairman. Blum-

(Continued on page 20)
THE HUMAN FACTOR in today's technology

Scientists have long been preoccupied with the technological problems of Man and the Machine. The increasingly complex nature of advanced systems has created an urgent need to enhance man's contribution to effective systems performance. The complicated nature of this relationship requires the skills of psychologists, social scientists, mathematicians, and engineers.

At Ramo-Wooldridge, human engineering, personnel selection, individual and system training, display design, and communications are successfully integrated into systems design and development by the technique of large-scale simulation.

Simulated inputs enable scientists to observe a system as it operates in a controlled environment and make possible the collection of data on performance, training, human engineering, maintenance, and logistics and support. Scientists and engineers use this data to assure the design, production, and delivery of a unified system capable of high performance and reliability.

Expanding programs at Ramo-Wooldridge in the broad areas of electronic systems technology, computers, and data processing have created outstanding opportunities for scientists and engineers. For further information concerning these opportunities write to Mr. D. L. Pyke.

Ramo-Wooldridge
P. O. BOX 90534, AIRPORT STATION - LOS ANGELES 45, CALIFORNIA
a division of Thompson Ramo Wooldridge Inc.
MORE ELECTION

Mark S. Blumberg, M.D., vice chairman, PGME

Holding an AB from Stanford University and an MD from the UCLA School of Medicine, he served a rotating internship in hospitals of the University of Wisconsin.

His postgraduate training includes work at Ohio State College and the USAF both in electrical engineering. He has served on the faculties of the College of San Mateo and UCLA and is currently an instructor in electrical engineering at Stanford.

Memberships include the American Medical Association and the Santa Clara Medical Society, besides IRE.

Professional Group on Microwave Theory & Techniques

Theodore Moreno, Varian Associates, chairman. Joining Varian in 1951, Moreno is now manager of research-and-development engineering and a member of the board of directors. He was formerly a research physicist in guided missiles with Hughes Aircraft Company, a research associate at MIT, and a project engineer with Sperry Gyroscope Company in microwave-component and measuring-equipment research and development.

His education has included an AB and MA from Stanford University and an ScD in 1949 in electrical engineering from MIT.

Moreno is a member of Sigma Xi, Tau Beta Pi, and Phi Beta Kappa.

Hubert Heffner, vice chairman, PGMTT

Atomic Energy Commission.

During the war he served in the Army Signal Corps where for a time he was in charge of several microwave relay stations in Germany. Between 1952 and 1954, Heffner was a member of the technical staff of the Bell Telephone Laboratories where he was engaged in vacuum-tube research.

Since 1954 he has been on the faculty of Stanford University where he is now associate professor of electrical engineering. Heffner is a member of Phi Beta Kappa, Sigma Xi, and the American Physical Society.

Edward M. T. Jones, Stanford Research Institute, secretary-treasurer. Jones, head of the microwave group in the electromagnetics laboratory, received his BS in electrical engineering from Swarthmore College and his MS and PhD also in electrical engineering, from Stanford University. He was a radar

(Continued on page 22)

Noel P. Thompson, secretary-treasurer, PGME

Thodore Moreno, chairman, PGMTT

Hubert Heffner, Stanford University, vice chairman. Heffner was born in Lincoln, N. C. He received the BS degree in physics in 1947 and the MS and PhD degrees in electrical engineering from Stanford University. From 1949 to 1951 he was a pre-doctoral fellow of the

Edward M. T. Jones, secretary-treasurer, PGMTT

OCTOBER 1959
If You Know Semiconductors
You Ought to Know Raytheon

Raytheon has all types of engineering opportunities in just about every fascinating phase of semiconductors. No matter what your interest — or experience — you're almost sure to find the position you want at Raytheon. The descriptions in this ad are typical of the positions open. Your resume doesn't need to be in iambic pentameter — but get it in today to

Joseph McGovern,
Semiconductor Division, Raytheon Company,
150 California Street, Newton 58, Mass.

Here are typical examples of key positions now open:

PROCESS ENGINEER
Develop and specify production processes. Analyze and rectify manufacturing problems. Improve processes with respect to quality, yield and cost reduction. Act as consultant on production and quality control. BS with basic coverage in chemistry, physics and mathematics.
Up to $13,000.

PRODUCT ENGINEER
Design, development, pilot production and evaluation of advanced semiconductor devices and circuit-paks for market samples. BS in physics, metallurgy, chemistry or electrical engineering.
Up to $12,000.

INDUSTRIAL ENGINEER
Standards and methods, planning and facilities, and cost control in semiconductor manufacturing. Minimum of two to three years experience in electronic industry. BS in IE or equivalent required. Work factor or MTM training desirable.
Up to $10,000.

APPLICATIONS ENGINEER
To design and study amplifying and switching circuits and the properties of new devices in these circuits. Minimum of two years semiconductor circuit design experience. Electronics degree.
Up to $10,000.

If you know SEMICONDUCTORS
You ought to know RAYTHEON

OCTOBER 1959
PROJECT ENGINEERS

IMMEDIATE OPENINGS

AREAS OF ACTIVITIES

Electronic Countermeasures
Advanced Communications
Traveling Wave Tube Applications
Microwave Receivers
Low & High Power R.F. Amplifiers
Transistor Circuits
Aircraft & Ground-Based Antennas

A continuing increase in the number and variety of advanced projects in which Granger Associates is engaged has created additional responsible positions for electronic engineers at both design and project levels.

Competent engineers will find that responsibility at Granger Associates is synonymous with engineering capability. Project engineers are given "start-to-finish" engineering assignments as soon as qualified.

Granger Associates is a young, rapidly growing, employee-owned company engaged in development and manufacture of radio systems and system components. Congenial associates who are prominent in their fields will add to your own professional development.

To investigate further

DR. J. V. N. GRANGER

Granger Associates
966 Commercial Street
Palo Alto, California

RESDEL ENGINEERING CORPORATION needs SENIOR ENGINEERS

Progressive Company well established in advanced Research Development and Production in Space Technology, has Permanent and Attractive Openings for Engineers (Degrees Preferred).

Senior Electronic Project Engineers Experienced in Advanced Circuit Design of VHF-UHF Space Communication Equipment.

Senior Microwave Systems Specialists, also Experienced in VHF-UHF Communications.

Senior Mechanical Design Engineers, with experience in Packaging of Missleborne Electronic Hardware.

Confidential and convenient interviews arranged by:

Personnel Director, Phone Ryan 1-7689
330 So. Fair Oaks Avenue, Pasadena, California

MORE ELECTION

maintenance officer in the U. S. Navy from 1944 to 1946 and, from 1948 to 1950, was a research associate at Stanford.

Jones joined the staff of Stanford Research Institute in 1950. In 1957 he became head of the microwave group of the electromagnetics laboratory. His fields of specialty include microwave filters and antennas, strip-line components, and parametric amplifiers.

Jones is a senior member of the Institute and a member of PGAP; a member of the Scientific Research Society of America; Sigma Tau; and Sigma Xi.

Professional Group on Production Techniques

Estrada Fanjul, Stanford Research Institute, chairman. A senior designer at SRI, Fanjul is a graduate of Mercersburg Academy. He has attended Cornell University and recently received a certificate in business administration from the University of Santa Clara where he is working toward a BS in commerce.

He had been connected with Electronics Associates, Inc., and North American Aviation before joining SRI in 1951.

Charles A. Eldon, Hewlett-Packard Co., vice chairman. Eldon is production manager of Plant 1 at -hp. He was born in Tacoma, Washington, lived in Hawaii, obtained degrees of BS in physics and MBA in business, both from Stanford.

His PGPT activities have included that of finance chairman for the Third National Conference, that of WESCON technical-session chairman, and that of Grid reporter. He is a member of the American Institute of Industrial Engineers.

George F. Reyling, Varian Associates, secretary-treasurer. A native of New York City, Reyling graduated from Minneola High School and obtained a Bachelor of chemical engineering from the Polytechnic Institute of Brooklyn.

His business connections have included Foster D. Snell Inc.; RCA Manufacturing Co., Harrison, N. J.; and Sperry Gyroscope Co., Lake Success.

At Varian he is currently manager of quality assurance and engineering services.

Olof Londeck, Electro Engineering Works, program chairman. Londeck is production manager, having been with...
digital offers all the advantages of the

BUILDING BLOCK CONCEPT

- Full selection of transistorized logic packages
- Complete freedom and flexibility of application
- Time-saving ease of assembly and reassembly
- Speeds up to 5 megacycles per second
- Economy in slow-speed applications

Packaged in convenient building block form, DEC Test Equipment units can be assembled quickly and easily by means of banana-jack patch cord interconnections to form custom digital test instruments such as signal generators, counters, pattern generators, etc.

Featuring saturated circuits with wide operating margins, DEC System plug-in units provide the designer complete flexibility in formulating the logic for permanent or semi-permanent digital systems.

Write or call for complete technical information.

Professional Group on Space Electronics & Telemetry

Gerald O. Moore, Philco Corporation, chairman. Moore was born in Cass County, Indiana, and attended Purdue University where he obtained his BSEE in 1936. He began his uninterrupted professional career with Philco that year as a junior design engineer in the radio and television department.

During World War II he served as project engineer on the proximity fuse and was a member of the all-industry (Continued on page 24)

George F. Reyling, secretary-treasurer, PGPT

Electro Engineering Works once before from 1952 to 1954 as plant supervisor. Meanwhile he was with the Berkeley Division of Beckman Instruments.

A native of Sweden, he received his BS in electrical engineering from the State Electrotechnical Institute at Vasteras. He came to the United States in 1949, having worked for ASEA Electric, Inc., as a research and production engineer.

He holds memberships in AIEE and American Society for Quality Control.

Olof Landeck, program chairman, PGPT

A native of Sweden, he received his BS in electrical engineering from the State Electrotechnical Institute at Vasteras. He came to the United States in 1949, having worked for ASEA Electric, Inc., as a research and production engineer.

He holds memberships in AIEE and American Society for Quality Control.

Write or call for complete technical information.

DIGITAL TEST EQUIPMENT

SYSTEM BUILDING BLOCKS

Digital Equipment Corporation

Maynard, Massachusetts

Twingaks 7-8823 • TWX 816
Gerald O. Moore, chairman, PGSET

technical committee on this project. He was technical consultant to Philco International Corporation in charge of overseas assembly of radio and television receivers and became manager of the electronic department of the Philco plant in Mexico City in 1954.

In 1957 he joined the western development laboratories in Palo Alto as a group supervisor in charge of design and development of data transmission devices for a classified space-communications project. He is currently Philco project manager for the Courier communications satellite sponsored by the Signal Corps.

Louis H. Smaus, Lockheed, vice chairman. A research scientist and section supervisor on satellite-borne telemetry and communications systems in the missiles and space division, Smaus was formerly in the Ames Aeronautical Laboratory at Moffett Field during two periods separated by a year in the instrumentation laboratory at Massachusetts Institute of Technology. He has also been with the Naval Research Laboratory and Pacific Gas and Electric Co.

He has a BSEE from the University of California at Berkeley, is a senior member of the Institute, and a member of the Engineering Management Professional Group.

Robert Bernard Morgan, Lockheed, secretary. A staff scientist in the missiles and space division, Morgan has been with Lockheed since 1957. He was formerly associated with Hughes Aircraft Co., Bell Aircraft Corp., and the Uni-

(Continued on page 26)
Now... automatically programmed VOLTAGE DIVISION WITH THE NEW Model X-551 DEKAMATIC Voltage Divider...

TRANSFORMER TYPE—relay-operated divider designed for applications which require high accuracy and extreme reliability. Can be used as a binary-to-analog converter, as well as for rapid calibration and inspection applications.

TEN COMPLETE DIVIDER UNITS—mounted across a standard relay rack. Provides unusual flexibility and interchangeability for system design.

PROGRAMMING—by standard binary code supplied from punched cards or tape.

LINEARITY OF 0.01%, RESOLUTION OF APPROX. 0.006%—superior performance for systems requiring the speed and reliability of automatic programming.

SEND FOR DESCRIPTIVE LITERATURE

In San Francisco, San Mateo, Palo Alto, Sacramento and all East Bay exchange cities ask for ENTERPRISE 1-3031 (No Long Distance Charges)

If we are not listed in your exchange Call Portland, Oregon collect

CHERRY 6-3331

ESI has outstanding job opportunities for experienced design and applications engineers. Call or write C. Davis.
EVENTS OF INTEREST

Meetings Summary

October 19-21 — URSI Fall Meeting.

October 29-31 — Electron Devices.
Shareham Hotel, Washington, D.C. Dr. John Hornbeck, Bell Telephone Labs, Murray Hill, N. J.

November 3-5 — Mid-America Electronics Conference. Kansas City, Mo. Dr. Sheldon Levy, Mid-West Research Institute, 425 Volker Blvd., Kansas City, Mo.

November 4-6 — Automatic Control Conference.
Sheraton-Dallas Hotel, Dallas, Texas. George Axelby, Westinghouse Air Arm Division, Box 746, Friendship Airport Station, Baltimore, Md.

November 9-11 — Radio Fall Meeting.
Syracuse Hotel, Syracuse, N. Y. Virgil M. Graham, EIA, 11 W. 42 Street, New York 26, N. Y.

November 9-11 — Fourth IRE Instrumentation Conference and Exhibit. Atlanta Biltmore Hotel, Atlanta, Georgia. W. B. Jones, Jr., School of Electrical Engineering, Georgia Institute of Technology, Atlanta, Georgia.

November 10-12 — Twelfth Annual Conference on Electrical Techniques in Medicine and Biology.
Sheraton Hotel, Philadelphia, Penna. Dr. L. E. Flory, RCA Laboratories, Princeton, N. J.

November 17-19 — NEREM (Northeast Electronics Research and Engineering Meeting).
Commonwealth Armory, Boston, Mass. Dr. Gardner A. Norton and Dr. Ralph Miller; Acro Research and Adv. Division, Lawrence, Mass.

(Continued on page 28)

MORE ELECTION

versity of California at Sandia.

Having a BS in general engineering from Jefferson College, he has performed graduate studies in electrical engineering at both the University of Buffalo and the University of Minnesota besides completing a radar electronics course in the Chicago Radar School of Illinois Institute of Technology. He holds membership in the American Institute of Electrical Engineers.

D-C POWER

Precisely Regulated for Missile Testing and General Use

SILICON POWER SUPPLIES
available in 30 standardized and militarized models from 30 to 1500 amps ... 6 to 135 volts.

Write For Bulletin AC-58-A
CHRISTIE ELECTRIC CORP.
3410 W. 67th St., Los Angeles 43, Calif.
Represented by C. R. Dalton Associates
132 El Camino Real, San Carlos, Calif.
Phone: LYtell 1-2654

order from
local stock

G. E. METERS
for complete
catalog information:

CARL HERRMANN Associates
P.O. Box 1179 • Palo Alto, California
DAvenport 6-6033

Pasadena: Ryan 1-5111
San Diego: ask operator for Zenith 0702

distinctive • readable • reliable

D-C
0 MICROAMPERES 20

GENERAL ELECTRIC
We are recruiting

SCIENTISTS • ENGINEERS

in various disciplines
for a large number of firms in R&D and manufacturing
located in

SAN FRANCISCO BAY AREA • SOUTHERN CALIFORNIA • BACK EAST

Many excellent opportunities for career advancement
(Employer pays interview, moving and agency costs)

SUBMIT RESUME IN CONFIDENCE

PROFESSIONAL & TECHNICAL RECRUITING ASSOCIATES

(A DIVISION OF THE PERMANENT EMPLOYMENT AGENCY)

SUITE G • 825 San Antonio Road • Palo Alto • Davenport 6-0744

Specialists in Professional Advancement
GRID SWINGS

It Is Reported:

Neal K. McNaughten, manager of Ampex Corporation’s professional products division, has been appointed a vice president. Along with McNaughten, four other Ampex executives were named vice presidents. They are John Jipp, manager of the instrumentation division; Herbert L. Brown, manager of Ampex Audio; Walter T. Selsted, director of research; and John M. Leslie, Jr., manager of Orr Industries, an Ampex subsidiary.

Ampex’ month-old computer products organization is headed by James D. Bowles.

Ampex has been appointed sole authorized distributor in the United States for Marconi television cameras, television equipment, and broadcasting equipment. Under terms of the arrangement, Ampex also will be authorized distributor in the United States for the range of television camera tubes manufactured by the English Electric Valve Company, Ltd.

Lynch Carrier Telephone Systems, Inc., San Francisco, has announced the appointment of Edward E. Combs to the position of vice president of engineer-
Microwave receivers and display equipment

Electronically scanned signal generators

Low noise amplifier studies (among others of course)

Attract E.E.'s and Physicists

By the droves

Shouldn't you investigate??

943 INDUSTRIAL AVENUE
PALO ALTO, CALIFORNIA
PHONE DAvenport 6-9500

McKenna Laboratories
New Multifrequency V-100

HIGH and MULTIFREQUENCY
ULTRASONIC EQUIPMENT
by McKenna Laboratories

Complete line standard cleaners
plus building block custom equipment.
Demonstration and Evaluation equipment available.

Call your
San Francisco Representative

WILLIAM THEISNER & CO.
Regent 9-6460 Sunnyvale

A variety of satisfactions exist at Litton Industries Electronic Equipments Division. Among these is the pleasurable experience of participating in research that moves through development and engineering to completed production.

INERTIAL GUIDANCE AND CONTROLS

AIRBORNE DIGITAL COMPUTERS AND DATA PROCESSING

RADAR AND COUNTERMEASURES

AIRBORNE TACTICAL DATA HANDLING AND DISPLAY

LARGE SCALE GROUND BASED DATA HANDLING

LITTON INDUSTRIES
Electronic Equipments Division
Beverly Hills, California

Inquiries regarding staff openings may be directed to Mr. C. T. Petrie, 336 North Foothill Road, Beverly Hills, California.
MORE SWINGS

by Bay Area engineering societies and industry, is traditionally held in February during the week of George Washington's birthday. The theme for the 1960 Engineers' Week is "Engineering's Great Challenge—The 1960's."

William G. Coe has been appointed field engineer for the J. T. Hill Company and will work out of the San Francisco office at 1682 Laurel Avenue, San Carlos. Coe comes to Hill from the Mycalex Corporation of America, where he was manager of their Pacific division office.

Coe Johnston

Cetec Electronics Company has been formed in Redwood City to manufacture electronic display equipment. Harrison Johnston is president. Johnston was formerly president of Production Research Corporation in Thronwood, N. Y., and previously was managing director, Ampex International, and general sales manager, Ampex Corp.

Sylvania has broken ground for a 40,000-sq-ft component-laboratories building in Mountain View and made plans for construction of a 32,000-sq-ft computer-component manufacturing plant in Santa Cruz. Personnel shifts include: A. H. Brelity to direct activities of a newly created equipment-fabrication facility; F. E. Butterfield to become manager of a new equipment-engineering laboratory; Earle Eldridge to be assistant director for operations; James A. Howard to head the newly created data-handling section; Jesse R. Lein to move up from laboratory manager to director (all in the electronic-defense laboratory). David H. Simon becomes advertising and merchandising manager and William Tiffany (both in special tube operations) has left for Germany to study under a Fulbright scholarship. Dr. B. A. Wambsgans becomes manager of the newly created systems-engineering laboratory in the electronic-defense laboratories.

International Business Machines Corporation's product development laboratory at San Jose has announced the

When You Think of

ELECTRONIC PRODUCTS... THINK OF US...

Our men are trained in the application of the manufacturer's products and will be happy to consult with you on your technical problems... Let us hear from you.

John Francis O'Halloran & Associates

ELECTRONICS ENGINEERS · SALES REPRESENTATIVES

- O'HALLORAN — NO. HOLLYWOOD
 Triangle 7-0173
- O'HALLORAN — SAN DIEGO
 Zenith 7745
- O'HALLORAN — PALO ALTO
 Davenport 6-1493

(Continued on page 32)
Are you tired of being just a number in a room? Or being assigned dull, stultifying tasks day after day?

If your imagination and creativeness are being wasted or misused in your present position, we want to talk with you.

The tremendous expansion program now underway at Data Systems has made available many really challenging career positions with almost unlimited opportunities. Our primary interests are in the field of advanced digital techniques for data processing and automatic control. Specifically, we are working with solid state electronics—transistors, diodes, magnetic cores, etc.—for use in special purpose computers, analog-digital converters and automatic control systems.

If you can qualify, you'll work with a team of eminent engineers who will make the most of your education and experience. You will be given responsibility as fast as you can handle it—the chance to develop your creativity—the opportunity to put your ideas to work.

So, if you are tired of being boxed in, contact us today by phone, wire or letter. Mailing a résumé will help us be more specific when we talk to you personally. Send it to John Flynn.

Generous salary program—Ability as well as seniority is rewarded at Data Systems. Good starting salaries at all levels; plenty of room for fast advancement.

Plus usual fringe benefits—Generous vacation plan, group insurance, sick leave, etc.

CHALLENGING POSITIONS NOW OPEN!

Logic Design Engineer—Design special purpose digital computing equipment for industrial control systems. B.S. in E.E. or Physics. Digital design experience.

Circuit Design Engineers—Develop digital and analog circuitry for EDP system. B.S. in E.E. or equivalent. Solid-state experience.

Optical Design Engineer—Develop optical devices for electronic mark reading equipment. Evaluate and/or develop mark reading materials and processes. B.S. in Physics or equivalent.

Power Supply Design Engineer—Develop transistorized regulator power supplies for digital data processing equipment and industrial control applications. B.S. in E.E. or Physics.

Servo Design Engineer—Design servomechanisms for industrial control applications. B.S. in E.E. Servo design experience, knowledge of standard servos, etc.

IDEAL SOUTHERN CALIFORNIA LOCATION—Data Systems is located in Gardena, an easy-living, smog-free Southern California suburb on the sea-breeze side of Los Angeles. Just a few minutes from the sea shore and numerous other recreational areas. Ideal year ’round climate. Your family will love it.
Link’s Palo Alto Development Laboratory offers a diversity of work assignments, an ideal environment for creative work and advancement. The Palo Alto Lab is expanding rapidly to serve additional commercial and military customers. Expansion at Link means additional engineering support personnel, highly advanced test equipment and new, larger facilities with continuing opportunities for professional growth in your field. These and other opportunities are available now...

- Analog Computer Components Engineers
- Missile Systems Analysis
- Analog Computer Systems Engineers
- Radar Simulation Engineers
- Industrial & Process Control
- Engineering Psychologist
- Digital Computer Engineers

Send your resume immediately to:
Mr. A. T. Rutman,
Link Aviation, Inc.
P.O. Box 1318
Palo Alto, California

more swings

Bennett Lehman

promotion of Dr. Byron J. Bennett to senior engineer. Bennett is manager of basic technology in the basic development area of the San Jose laboratory. He has been an advisory engineer since 1957.

Pulse Engineering Inc. has added 12,000 sq ft to double the production capacity at its Santa Clara plant. Appointed to the post of manufacturing manager is Robert E. Lehman, formerly with Lenkurt Electric Co.

Dwight Aitchison and Bernard Carpe have been promoted to senior engineers in Dalmo Victor Company’s microwave department.

Disman Arfin

Three senior scientists, all of whom received their PhDs from Stanford University, have been named to positions in the research and engineering division at Eitel-McCullough, Inc., San Carlos.

Dr. Donald A. Dunn, senior research associate and lecturer in the electrical engineering department at Stanford, will be manager of a newly created supporting research group and will also continue his microwave research work at the university; Dr. Murray I. Disman has been appointed leader of the traveling-wave-tube group; and Dr. Bernard Arfin, who is a staff member of the supporting research group, joins Eimat from Philips Laboratories. From 1955 to 1957 he was employed by Sperry Gyroscope Company.

Gould Hunter, executive vice president, has been named to the company’s board of directors.

William F. Ruck has been named manager of engineering services and controls in Dalmo Victor Company’s engineering division.

Watkins-Johnson Co. has added three men to key positions on its technical staff: Eugene A. Kinaman, primarily concerned with the development of low-noise traveling-wave tubes, spent the past six years with the Radio Corporation of America at Harrison, N. J.; Charles A. Arnold, whose work will be mainly in the field of high-power electronically tunable oscillators, came from General Electric Microwave Laboratory; and Robert E. Vehn, who will conduct research on beam-interaction structures for traveling-wave tubes, was previously engaged in research on microwave tubes at the Sylvania Microwave Tube Laboratory.

William Theisner & Co. has been appointed sales representative for Gian-nini Controls Corporation (precision potentiometers, digital stepping positioners, and pressure switches).

Olof Landeck has rejoined Electro Engineering Works as production manager. He has been production manager at the Berkeley Division of Beckman Instruments since 1954, prior to which he was plant supervisor at Electro.

Dr. Edward L. Ginzton has been elected chairman of the board of Varian Associates to fill the vacancy left by the recent death of Russell Varian. Ginzton has, for the past several years, been assistant to the board chairman. He is director of the microwave laboratory and professor of applied physics and electrical engineering at Stanford University.

Long & Associates, manufacturers’ representatives, now located in Redwood City, has added George H. Grinnell, sales engineer, to the staff. Grinnell has been with Monroe Calculating Machine Co. and the Alwac Division of El-Tronics Inc. The organization has been appointed representatives by Tape Cable Corp. (flat-conductor cable) and Crest Transformer Corp.

In Sunnyvale, the Lockheed missiles and space division has transferred all

(Continued on page 34)
call McCarthy Associates for POWER SUPPLIES

— choose from 4 complete lines — 150 types — extremely broad range of voltages and current

Representing 4 outstanding companies — Sorensen, Beta, Hammer and Fluke — we’re pretty certain to have what you need. Current outputs are available from 1 ma up to 500 amps. Voltages range all the way to 250,000 volts.

McCarthy will equip you with magnetic amplifier types...transistorized, miniature, tube, DC to DC, DC to AC, AC to DC, AC to AC, unregulated, resonant, electrostatic generator types, and precision power supplies. Also AC line regulators — 60 or 400 cycle — and frequency sources. Quick delivery on most types. Ask for complete literature, or a sales engineer.

McCarthy Associates, Inc.
ENGINEERING SALES AND SERVICE

SAN DIEGO:
934 W. Laurel - BE 9-2265

PHOENIX:
111 W. Osborn Rd. - CR 9-1891

SACRAMENTO-FOLSOM:
Enterprise 1-0879 • local call

PASADENA:
1055 E. Walnut • MU 1-7411

MENLO PARK:
635 Oak Grove • DA 6-7937

electronic plastics

The most complete source of plastics for electronic and industrial uses is now available from Illumitronic Engineering.

Materials: polystyrene, acrylic, polyethylene, phenolic, Teflon, and Kel-F.
Shapes: rods, sheets, and tubing; also Spiral Wrap and Spiral Cover.
Sizes: Each material in a wide range of sizes.
We specialize in small quantities.
Write for complete brochure.

Illumitronic Engineering
Sunnyvale, California

The R.S. HUGHES Company, Inc.
564 College Avenue, Palo Alto

in the BAY AREA call DAVENPORT 6-2922

October 1959
for engineers working in electronics, a word of importance from

HAROLD J. ARNOLD
Senior Group Engineer
Computer Language Translator &
Data Processing Systems

MORE SWINGS
the major functions of its three advanced satellite programs into its newly activated $8 million satellite production building which will be headquarters for the Discoverer, Midos, and Sans satellite developments.

Creation of a Dr. Louis N. Ridenour memorial fellowship, in honor of one of the principal architects of the Space Age, has been announced by the Massachusetts Institute of Technology and the Lockheed Leadership Fund.

William R. Rambo, professor of electrical engineering and director of the Stanford electronics laboratories, has been elected to the board of directors of Applied Technology, Inc., Palo Alto.

Ralph Kalibjian, formerly of Hughes Research and Development Laboratories, has joined the staff of the Electronics Engineering Department at the Lawrence Radiation Laboratory, Livermore. In his new position he will be in charge of special electron-tube development for the laboratory.

Kalibjian

Bourret

Raymond R. Bourret has been named manager of manufacturing at Precision Instrument Company, San Carlos. Previously, he was for eight years with Ampex Corporation.

James J. Hill is branch manager of the new Richard A. Strassner Co. office in San Carlos. Hill was for 12 years in the J. T. Hill Co. of San Gabriel.

Samuel P. Hunter, former partner in the firm of Curtin-Hunter, will head Kittleson Company’s Palo Alto office and direct sales in that area.

Thomas E. Holland is director of the recently formed research and development division and vice president of Beckman & Whitley, San Carlos, manufacturer of instruments and missile components. Holland joined Beckman & Whitley in 1958.

McCarthy Associates, Inc., have been appointed to represent Wayne Kerr Corporation, Philadelphia.

Membership Status
Following are the names of IRE members who have recently entered our area, thereby becoming members of the San Francisco Section:

Joy L. Acker
Barnett R. Agins
Richard C. Alberding
Bernard Arfin
Ray Aylworth
Sadeo Baishiki
Jock C. Baker
David C. Barham
James A. Bean
Waldemar I. Bends
Paul J. Beneteau
Jerry L. Berry
Rudolph L. Biesele, Jr.
Eugene R. Bindewald
Warren A. Birge
Elmer R. Bodnar
Clyde H. Bond
Lawrence P. Borden
Jack E. Bresnahan
Stuart E. Butterfield
Richard W. Colee
Bertil V. Carlson
John Castilla
Louis J. Carter, Jr.
Peter S. Castro
Rudolph S. Cazanjan
Arnold Cohen
Glenn V. Cook
Richard M. Cook
Richard K. Cooper
Earl D. Cotterel
Raymond D. Culy
Robert D. Daniel
Virginia Lee Davis
David K. Dean
Fernando De Mendonca
Joseph E. Dessert
Richard C. Dorf
Jerome J. Dover
Robert L. Dudley
Ira D. Eagle
Robert B. Fosterday
Clifton G. Engle
Robert F. Farber
James S. Farrior
Harry E. Faulkner
Oscar Firschein
Harvey M. Fishman
James A. Fuchs
John F. Gallaher
George F. Garcia
Larry L. Glass
R. R. Goldsborough, Jr.
John C. Grace
Dove C. Grameter
Q. Marian Hansen, Jr.
Richard D. Harbaugh
O. Charles Hardeen
Kenneth J. Harker
Hugh B. Haskell
William C. Hazel
Carl E. Herendeen
Harold W. Hopp

(Continued on page 36)
The search is on for:

Scientists • Engineers

in

- Systems Analysis
- Radome Design
- Test Equipment Design
- Microwave Antenna and Component Design
- Systems Testing
- Weapons System Analysis
- Design Engineering of Missile Components
- Circuit Design applied to Fire Control Systems
- Data Handling Systems
- Radar Tracking Systems
- Radar Receivers
- Missile CCM and Fuzing
- Tube Engineers
- Missile Navigational Systems

(Employer pays interview, moving and agency costs)

SUBMIT RESUME IN CONFIDENCE TO R. A. YOUNG

PROFESSIONAL & TECHNICAL RECRUITING ASSOCIATES

(A DIVISION OF THE PERMANENT EMPLOYMENT AGENCY)

825 SAN ANTONIO • PALO ALTO, CALIF. • Davenport 6-0744

JACK KAUFMAN

126 - 25th Avenue
San Mateo, California
Fireside 1-4942

Representing:

- Leach Relay Div.
 RELAYS — CONTACTORS
- Electro Switch Corp.
 ROTARY SWITCHES
- Callite-Tungsten Corp.
 LEADS AND FILAMENTS
- Lamtex Industries
 EPOXY FIBRE GLASS LAMINATES
- Electronic Mechanics Inc.
 MYKROY — GLASS BONDED MICA

ENCAPSULATED

RADIO FREQUENCY CHOKE

The following series of R.F. chokes range in value from 0.1 uh to 50 mh. Basically identical to our standard series of axial lead R.F. chokes bearing the equivalent number, these coils are encapsulated in epoxy resin and conform to MIL-C-15305A.

![Encapsulated Choke Diagram](image)

Send for the MILLER industrial catalog

It lists over 1300 chokes, filters, transformers and coils, available for immediate delivery. Includes 260 new coil items—many conforming to military specifications. Request Miller Catalog No. 60.

J. W. MILLER COMPANY
5917 South Main Street • Los Angeles 3, California

CANADIAN REPRESENTATIVE:

Atlas Radio Corp., Ltd., Toronto 19, Ont., Canada

GRID—35
MORE MEMBERSHIP

Bennett Hausman
Hartley J. Jensen
Roderick L. Jones
William Kotzanowski
Ralph Kolibsian
Francis N. King
John W. King
Thomas J. King
Herbert Kremer
William Kroll
Edwin B. Lee
Imsong Lee
John G. Lambros
Richard C. Lamy
Larry G. Larson
Myron E. Lee

William A. Youngberg

Following are the names of individuals who have been elected to current membership:

Barry A. Bell
Bruce E. Bell
Thomas J. Besmer
Anatole A. Bulow
Willibor S. Chaskin
Carlisle Cheney
Ralph C. Chernoff
Casey K. Clark
James P. Connally
Alfred A. Cortesi
Robert L. Cross
Thomas J. Davis, Jr.
George H. Duste
Laurence A. Dywer
Marvin D. Ewy
Philip A. Fialler
B. Clifford Gardner
C. Stewart Gillmor
Edmond B. Garmon
Alfred L. Grellich
Laird K. S. Haos
Raymond C. Hanson
Robert D. Harrington
James C. Hodges
William M. Holmes
Joseph L. Hussey
Hank A. Inthout
Michael Jen-Chao Hu
Floyd J. Jensen
R. William Johnston
Berlen A. Kenady

Donald H. Wythe, Jr.

Walter Kanyszky
William R. Kluger
Harold L. Knutsen, Jr.
James S. Koford
Nobuoji Kumagai
Edwin F. Laine
Donald A. Landis
William Loudenschlager
George A. Leavitt
Charles M. Lequieu
Robert K. Mangelsdorf
Dwight L. Marsh
Arnold M. Marschke
Ralph L. Massino
Theodore J. Netoff
Robert R. Newcomb
Daniel M. O'Rourke
Carlton K. Perkins
William S. Pope
Herbert U. Ragle, Jr.
Pennettso S. Royu
Ralph R. Sedillo
Mauraine E. Stangl
Pedro A. Szente
Irving Tamney
Rossford P. Tanke
Jack K. Thayer
Hugh C. Thomas
Ray C. Trout
Vernon D. Walker
Arnold Whtol

Following are the names of members who have recently been transferred to a higher grade of membership as noted:

SENIOR MEMBER

Melville E. Danesmore
John A. Haruff, Jr.

MEMBER

Robert A. Anderson
William W. Anderson
James A. Bean
Robert S. Bergman
Stanley H. Black
Sirio M. Braccini
Knut Buset
David K. Curry
John A. Donforth
Ted M. Daniels
Glen A. Dietelhorst
Earl G. Garthwait
Donald A. Gilger
Richard D. Grundy
Lester O. Hill
Jen Hsu
W. E. Kochenderfer, Jr.
Jenk K. Leang

Alfred H. Stone
Jorgen P. Vinding

James D. Lewis
James N. Lind
James F. Lipman
Jacob D. Magarison
Stanley L. Mercer
Charles W. Palmer
Don L. Palmer
Thomas H. Pedersen
Lester A. Peterson
Wayne H. Robinson
Elliott Rudee
Robert M. Rutenberg
John H. Shepherd, Jr.
Peter N. Sherrill
James J. Spilker, Jr.
Lawrence E. Stafford
Rudy T. Stefancik
John C. Stevenson

Lt. R. V. Wilson, Jr.

Wanted to Purchase
Back Issues of
IRE TRANSACTIONS
WESCON
CONVEnON RECORDS
NATIONAL
CONVENTION RECORDS

All groups 1951 to date

Contact
WESCON PERIODICALS
COMPANY
P.O. Box 729
San Fernando, Calif.
Empire 5-8688

W. C. Walker, Engineering Employment Mgr.,
Bendix Pacific, 11660 Sherman Way,
North Hollywood, California

I am interested in Electronic Engineering. I am a graduate engineer with... year experience.

Name
Address
City
Zone
State

Please send your resume to W. C. Walker or fill in the coupon and mail it today.

OCTOBER 1959
Neely Enterprises fields a team of six of the country's foremost electronic manufacturers. They play real "pro" ball, in the California-Arizona-Nevada-New Mexico league. Neely's squad of Field Men are graduate engineers and they take continual post-graduate training. Goal: Still more knowledge of electronics...still better preparation to serve you. Call one of Neely's eight offices, and watch them tackle your electronic instrumentation problem.
MANUFACTURERS INDEX

Manufacturer	Representative
Ace Engineering & Mch. Co. | Premmco, Inc.
Accurate Instrument Co. | Jay Stone & Assoc.
Alfred Electronics | White and Company
Alto Scientific Co. | Long & Associates
American Mach. & Fdry. | McCarthy Assoc.
Amplifier Corp. | Hugh Gray Company
Antlab, Inc. | Jay Stone & Assoc.
B & F Instruments | Hugh Gray Company
Behlman Engineering Co. | T. Louis Snitzer Co.
Beta Electric Co. | McCarthy Associates
Bogart Microwave | Hugh Gray Company
Boonton Electronic Products, Inc. | O'Halloran Assoc.
Budd-Stanley, Inc. | Hugh Gray Co.
Burmac Electronics Corp. | Hugh Gray Co.
C and H Supply Company | Jess W. Coffer
Callite-Tungsten Corp. | Jack Kaufman
Cincinnati Div. Bendix | Hugh Gray Co.
Data Instr., Tele. | T. Louis Snitzer Co.
Del Electronics Corp. | Hugh Gray Company
Di 'An Controls, Inc. | Jay Stone & Assoc.
Dymec, Inc. | Neely Enterprises
Electro-Measurements | Neely Enterprises
Electro-Products Lab. | Hugh Gray Company
Electro-Pulse, Inc. | T. Louis Snitzer Co.
Electronic Switch Corp. | Jack Kaufman
Electronic Measurements Co. | O'Halloran Assoc.
Electronic Mechanics Inc. | Jack Kaufman
ELMEG (Presin Co.) | White and Co.
Emerson & Cuming | McCarthy Assoc.
EMI-Electronics, Ltd. | White & Company
Empire Devices Products | White and Company
Franklin Electronics, Inc. | T. Louis Snitzer Co.
General Communication | McCarthy Assoc.
Glass-Tite Industries | Jack Stone & Assoc.
Globe Industries | Long & Associates
Hammer Electronics | McCarthy Assoc.
Hewlett-Packard | Neely Enterprises
Heli-Coil Corp. | Premmco, Inc.
Hub-Pot Inc. | Hugh Gray Company
Huggins Laboratories, Inc. | T. Louis Snitzer Co.
Hughes Products Co. | McCarthy Assoc.
IVO (Presin Co.) | White and Co.
Julie Research Laboratory | Hugh Gray Co.
Kaufe and Co., Inc. | Jay Stone & Assoc.
Keithley Instruments | T. Louis Snitzer Co.
Kine | Neely Enterprises
Lamtex Industries | Jack Kaufman
Leach Relay Division | Jack Kaufman
LEL, Inc. | White and Company
Levinthal Electronic Nuclear Div. | White and Co.
Lindsay Structures | Premmco, Inc.
Manson Laboratories, Inc. | White and Co.
Massa Div., Cahu Electronics | McCarthy Assoc.
Menlo Park Engineering | O'Halloran Assoc.
Narda Microwave Corp. | O'Halloran Assoc.
Oregon Electronic Mfg. | White and Company
PCA Electronics, Inc. | Jay Stone & Assoc.
Polarad Electronics | T. Louis Snitzer Co.
Quan-Tech Laboratory | Hugh Gray Company
Radiation Counter Labs | White and Company
Rantec Corp. | O'Halloran Assoc.
Sanborn Company | Neely Enterprises
Sensitive Research Instrument | McCarthy Assoc.
Sierra Electronic Corp. | T. Louis Snitzer Co.
Sorensen & Co. | McCarthy Assoc.
Technology Instrument | Long & Associates
Telifonic Industries | McCarthy Assoc.
Transistor, Div. Van Norman | O'Halloran Assoc.
U. S. Science Corp. (Topp Ind.) | Premmco, Inc.
Universal Electronics | T. Louis Snitzer Co.
Varian Associates | Neely Enterprises
Weinschel Engineering | O'Halloran Assoc.
Wincharger Corp. (Zenith Radio Corp.) | Premmco, Inc.
Winchester Electronics | Long & Associates

INDEX TO ADVERTISERS

Aeronutronic, Div. Ford Motor Co. | 30
Beckman & Whitley, Inc. | 24
Bendix-Pacific | 36
Christie Electric Corp. | 20
Coffier, Jess W., 115 S. Ashton Av., Millbrae, QX 7-4146 | 38
Columbia Technical Corp. | 28
Data Systems Department | 31
Digital Equipment Corp. | 23
Eitel-McCullough, Inc. | 9
Electro-Measurments, Inc. | 25
Electronic Engineering Co. of California | 34
Fluke Mfg. Co., Inc., John | 4
General Radio Co. | 40
Gertsh Products, Inc. | 39
Granger Associates | 22
Gray Co., 2166 Market St., San Francisco | 12, 17
Klondike 2-1777 | 38
Gudebrod Bros. Silk Co. | 28
Herrmann Associates, Carl | 26
Hewlett-Packard Corp. | 17
Hughes Aircraft Co. | 15
Hughes Co., Inc., R. S. | 33
IBM Corp. | 7
Illumitronic Engineering | 33
Fireside 1-4942 | 35
Kay Electric Co. | 25
Lerco Electronics Inc. | 26
Lincoln Instrument Co. | 32
Liton Industries, Electric | 29
Long & Assoc.: 680 Warren, Redwood City; EM 9-3324 | 38
McCarthy Assoc.; 635 Oak Grove, Menlo | Park; Davenport 6-7937 | 33, 38
Measurements Corp. | 33
ME Labs | 39
Miller Co., J. W. | 25
Neely Enterprises: 501 Laurel St., San Carlos; | 37, 38
LYtell 1-2626.; 1317 Fifteenth St., Sacramento; | 37, 38
Gilbert 2-8901
O'Halloran, John Francis & Associates; 825 San | 30, 38
Antonio Rd., Palo Alto; Davenport 6-1493 | 30, 38
Perkin Engineering Corp. | 3
Permanent Employment Agency | 27, 35
Premmco, Inc., of Northern California: | 37, 38
P.O. Box 412, Alameda; Lakehurst 3-4945 | 38
Raytheon Co., Semi-Conductor Div. | 21
Ramo-Wooldridge Division | 19
Repath Pacific Division | 22
Resdel Engineering Corp. | 22
Snitzer Co., T. L.: 515 So. Mathilda Ave., | Sunnyvale; Regent 6-6733 | 24, 38
Space Technology Laboratories | 13
Stane & Associates, Inc., Box 585, Sunnyvale | 38
Yorkshire 8-2770 | 38
Sylvania | 36
Tektronix, Inc. | 31
Theisner Co., William | 29
Vario Associates | 2
Western Gold & Platinum Co. | 27
Western Periodicals Co. | 36
White and Co., 788 Mayview Ave., | 38
Palo Alto; Davenport 1-3350.
measures both in-phase and quadrature voltage ratios – with high accuracy

Unique versatility. This instrument cancels quadrature effects, giving a sharp, true null.

In eliminating quadrature voltage, this Gertsch bridge achieves an in-phase ratio accuracy as good as 0.001%. Quadrature voltage ratios are read as rectangular coordinates, tangent of phase-shift angle, or magnitude of phase-shift angle in degrees directly. Harmonics and noise are rejected by use of band-pass filters.

Self-contained phase-sensitive detector gives excellent sensitivity with only 2-volt reference.

Six-place resolution. The magnitude of the transformation ratios of $R + jX$ voltages are readable to 6 places.

Applications. Unit is used with both 3- or 4-terminal networks such as transformers, synchros, transducers, and resolvers.

Two frequency ranges – 30 to 1000 cps (Model CRB-1B), and 50 to 3000 cps (Model CRB-2B).

Write for complete data in Bulletin CRB.
IMPEDANCE COMPARATOR
For Testing Components Automatically or Semiautomatically

TYPE 1605-A IMPEDANCE COMPARATOR ... $790

Also available, the Type 1605-AS3, with a 10-to-1 increase in sensitivity. This special design can measure impedance differences as small as 0.001% and phase-angle differences of 0.0001 radian. Price on request.

- **No manual balancing necessary**: Impedance-magnitude and phase-angle differences between unknown and standard are indicated directly on two panel meters.
- **Impedance Ranges**: Resistance 2 kΩ to 20 MΩ; Inductance 20 μH to 10,000H; Capacitance 40 μF to 800 μF (to 0.1 μF with reduced sensitivity).
- **Full-scale meter ranges**: Impedance-magnitude difference: ±0.3%, ±1%, ±3%, ±10% Phase-angle difference in radians: ±0.003, ±0.01, ±0.03, ±0.1
- **Accuracy is 3% of full scale** (±0.009% on smallest range)

- 100c, 1 kc, 10 kc, 100 kc internal test frequencies.
- D-C voltages proportional to percentage deviation from standard are provided for control of automated sorting systems.
- Excellent guard circuitry permits long cable runs for remote measurements.
- No excess switches or complex controls.
- Constructed for reliable service, long life.
- May be rack or bench mounted.

Centralab uses G-R Impedance Comparators in production testing miniature ceramic-disc and feed-thru capacitors produced at their Milwaukee Plant. The speed and ease with which the Comparator makes these measurements permits Centralab to maintain continuous quality-control checks without adding significant manufacturing time or cost to their product.

G-R Impedance Comparator is the heart of a highly automated system designed under Signal Corps contract by the Inland Testing Laboratories of Morton Grove, Illinois. This system measures and records in sequence insulation resistance, capacitance, and power factor of 12,000 capacitors of several different values. All three parameters for each capacitor are measured without need of resetting controls.

Comparator metering voltages are fed into a digital voltmeter and converted into digital form for IBM-card recording. The program will provide detailed information concerning reliability and life cycles of capacitors operating under various voltages and environmental conditions.

CENTRALAB USES G-R IMPEDANCE COMPARATORS IN PRODUCTION TESTING MICROMINIATURE CERAMIC-DISC AND FEED-THRU CAPACITORS PRODUCED AT THEIR MILWAUKEE PLANT.