Contributions to a Proposed Standard
for Binary Floating-Point Arithmetic

By
Jerome Toby Coonen

B.S. (University of Illinois) 1975
M.S. (University of Illinois) 1975

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
Mathematics
in the

GRADUATE DIVISION

OF THE

UNIVERSITY OF CALIFORNIA, BERKELEY

Z///%,\ Some 1 (754

...

.............................

...

..

Contributions to a Proposed Standard
for Binary Floating-Point Arithmetic

Jerome T. Coonen

ABSTRACT

In the fall of 1977 the Institute of Electrical and Electronics Engineers
commissioned working group 754 to draft a standard for binary floating-point
arithmetic. It was intended to prevent the proliferation of disparate arith-
metics in the new microprocessor industry. At that time there were so many
different flavors of arithmetic available on mainframes and minicomputers
that the cost of reconciling their differences in numerical software had
become, and remains, staggering. Now, more than five years later, draft 10.0
of the proposed standard has been voted out of the working group for IEEE

approval.

This thesis consists of a set of *'footnotes” to the prop'osed standard.
The first of them, an implementation guide published in January 1980, served
as a working draft of the standard for over a year. The remaining chapters
unfolded as the proposed standard did. They include an analysis of gradual
underflow, the most controversial feature of the standard; an exhaustive dis-
cussion of radix conversion, which has been specified in the proposed stan-
dard only up to a worst-case error bound; and a revised version of the arith-
metic test suite which has been available in machine-readable form from the

working group.

Approved:

//(/ f/é{&h\qg*

Jrs

to my parents

Table of Contents

CHAPTER
1. Introduction
2. The Original Implementation Guide
3. Numerical Programming Eﬁvironments
4. Envrironmental Inquiries in FORTRAN
5. A Guide to Underflow and the Denormalized Numbers

Comparisons and Branching
Accurate Yet Economical Binary-Decimal Conversions

Radix-Free Description of the Proposed Standard

© ©® N 2

Intermediate Exponent Calculations

10. A Compact P754 Test Suite -- Version 2.0

APPENDIX
A Excerpts from a Proposed Standard for Binary Floating
Point Arithmetic
B. Test Vectors for P754 Arithmetic — Version 2.0
C. Test Program for P754 Arithmetic — Version 2.0

D. Pascal Unit for Correctly Rounded Binary-Decimal Conversions

CHAPTER 1

Introduction

**‘Most numerical analysts have no interest in arithmetic.”
B. N. Parlett (1979)

The lack of interest abounds. Professor Parlett’s claim applies to com-
puter designers as well as users. And it is usually the speed of arithmetic
that incites what interest there is. Yet a proposed IEEE standard for binary
floating point arithmetic is in the last stage of approval before that body’s
Standards Board, and, despite that the proposal is hard to implement, it has
become already a de facto standard among several of the largest micropro-

cessor manufacturers. Why?

Calculator and computer users are familiar with the fact that the quo-
tient 1/3 must be rounded in order to be representable on a binary or
decimal machine. But rounding is not to blame when 1/3 differs from 9/27.
Such a capricious discrepancy can cause a perfectly reasonable program to
fail mysteriously, arousing dismay, not interest. Also daunting is the pros-
pect of developing software to run across the dozens of diverse arithmetics
in use today, a number that will increase with the rise of the microprocessor
industry.

This thesis is about the proposed IEEE standard 754 for binary floating
point arithmetic. The thesis developed alongside the standard itself, as a set
of clarifications and elaborations of the terse 754 document; it is an aid to
implementors, and a demonstration that the implementation is feasible.

Because of the care taken in the specification of proposed standard 754, and

1.2

because of its rising support within the industry, there is hope for an end to
the dismay caused by bad arithmetic. In a sense, it is the best arithmetic

that arouses the least interest among users.

1. ABrief History of IEEE Working Group 754

In the fall of 1977, working group 754 of the IEEE Computer Society
Microprocessor Standards Committee was convened to draft an industry
standard for floating point arithmetic on microprocessors. It was known that
Intel Corporation was pursuing high-quality arithmetic for its family of pro-
ducts. The orginal intent of the working group was simply to fix a set of com-
mon data formats so that binary data could be transferred between different
microprocessors. The first meetings of the working group were attended by
microprocessor enthusiasts, including Bob Stewart and Tom Pittman, as well
as John Palmer of Intel and W. Kahan of the University of California at Berke-

ley, then consulting to Intel. Richard Delp chaired the meetings.

Due chiefly to the leadership of Kahan, the scope of the working group
quickly expanded from data formats to a thorough specification of arith-
metic. In early 1978 Kahan enlisted the support of Harold S. Stone, then
visiting Berkeley, and the author to draft a proposal whose key ideas were
drawn from Kahan's years of experience on machines ranging from main-
frames to pocket calculators. Kahan estimated that the project would
require ‘“one hard man-month of effort’’. He underestimated. Over the next
three months, drafts of the so-called Kahan-Coonen-Stone proposal were
presented to the monthly meetings of the working group. Throughout this
period of refinement, Palmer and others at Intel were developing a major

VLS] implementation of the proposal.

1.3

By late 1978 the working group included members from National Sem-
iconductor, Motorola, Zilog, Meonolithic Memories, Apple Computer, Tektronix,
and Digital Equipment Corporation. There was a certain irony about the
standardization process — on the one hand the working group was chartered
to develop an industry standard, while on the other hand its work was sup-
posed to be uninhibited by the kind of partisan politicking that arises natur-
ally among competing manufacturers. At that time, the proposal was embo-
died in an implementation guide prepared by the author; this paper, finally

published in January 1980, appears as Chapter 2.

Over the subsequent year several competing proposals were presented
to the working group. Mary H. Payne and William Strecker of DEC proposed
what could be thought of as enhanced VAX-11 arithmetic. Steve Walther and
Robert Fraley of Hewlett-Packard Laboratories proposed what they thought
of as a “*safer'’ scheme, with special symbols for underflowed and overflowed
values. Robert Reid, working independently, developed an idea that arises
occasionally in the literature, varying the width of a number's exponent field
dynamically, widening it (while narrowing the significand) in order to accom-
modate extremely large or tiny magnitudes. A subcommittee of Pittman,
Palmer, Kahan, and the author was cornmissioned to cast the prevailing pro-
posal in a form suitable for an IEEE standard. David K. Stevenson later joined
the group; and subsequently he was voted chairman of the entire working
group.

Draft 5.11 of the proposed standard stood without change for over a
year. It was revised up to draft B.0 in preparation for the March 1981 issue of
IEEE Computer magazine, of which an entire section was devoted to floating

point standardization. Discussions in the working group continually bogged

1.4

down on the issue of underflow — by far the most controversial aspect of the
proposed standard. In an attempt to present the issues on paper, for surely
resolution seemed beyond hope, the author prepared the paper which, as

published in that issue of Computer, appears as Chapter 5.

Shortly after publication of draft 8.0, the working group voted to developi
that proposal, to the exclusion of the others. One last round of changes was
due. Over mid-1981 two features were removed from the proposal, the pro-
jective mode interpretation of infinity and the warning mode interpretation
of the denormalized numbers. In lively debate within the working group it
was decided that the modicum of safety bought by these modes was not
worth the known complexity of implementing them and explaining them to
users. Today, almost seven years since the working group first met, draft
10.0 of proposed standard 754 has reached the last level of approval, the
IEEE Standards Board. A slightly abbreviated version of the draft appears as
Appendix A.

2. Design Goals — User Friendly Floating Point Arithmetic?

Although common data formats were the goal when the 754 working
group was chartered, three simple design principles evolved: ensure that
most existing programs would run at least as well on standard systems as
they had on earlier machines with comparable range and precision; provide
the most robust arithmetic possible with 1880's technology; and include

features to enhance software development by experts.

In order to preserve the substantial investment in existing software, the
proposal has to be as least as good as any other arithmetic available. This
turns out not to be a significant constraint, and is really subsumed by the

desire to build the best possible arithmetic. But old software could be

1.5

undermined by excellent arithmetic with features unknown to the original
programmer. Since most of the innovations in 754 apply when exceptions
arise, they aflect old programs only when some exception, for example
overflow or division by zero, occurs. In such cases an earlier machine would
probably stop execution anyway. The situation with the comparison operator
is different; here a mechanism was included specifically to defend old pro-

grams and programmers. This is the subject of Chapter 6.

Who could determine just how much arithmetic could be implemented
on a chip in the current technology? In order to bound its efforts, the work-
ing group required some measure of feasibility. This came from two arenas.
As mentioned before, Intel was well into the design of the iBO87 coprocessor
to the 8086/8088 CPUs. They stretched the limits in die size and yield. At
the same time, George Taylor, a Berkeley graduate student, was designing a
set of circuit boards implementing 754 which could replace the VAX-11/780
floating point accelerator boards. Taylor [9] showed that, with care, the cost
and complexity of 754 could be reduced to that of the more ordinary VAX,

whose arithmetic is in fact very good already.

In the next section we will survey what the standard does include. It is
appropriate to discuss here what was deliberately excluded. From the start,
754 was a binary standard. Although decimal arithmetic has obvious advan-
tages for most end users (in contrast to computational advantages of
binary), it was deferred to a later standard [2]). The elementary functions,
although implemented on chip by Intel and others, were deemed beyond the
scope of a standard intended for simple control devices as well as general
purpose computers. Alsp, just the standardization of transcendental func-

tions is complicated by the discussion of allowable errors. {Chapter 7, on

1.6

binary-decimal conversions, typifies the kind of analysis involved.) Finally,
interval arithmetic was omitted despite its potential for computing and
reporting error bounds. However, the standard requires the implementation
of modes of rounding that support the economical implementation of interval

arithmetic in software.

Adding features to a system is always easy. In the case of 754, to its
credit, the experts' features arose naturally from the base design, which is
surveyed below. The availability of special rounding modes, such as just
mentioned, error flags to check for the occurrence of an exception that
would otherwise be dispatched in a specified fashion, or special functions,
such as recommended in the appendix to 754, all support the development of
bhigh-quality codes.

The point of the 754 design is to provide the most robust arithmetic pos-
sible while limiting *‘error messages” to those times when the bounds of its
capability have been surpassed. This is a delicate line to walk. Cry *‘Wolf!"
too often, such as on every occurrence of underflow, and the message will be
ignored. Let a computation run amok with no indication, all the while substi-
tuting, say, O for overflowed values, and inevitably some user of another’s
software will be misled. In the parlance of human engineering, 754 is user
friendly since anyone doing ordinary calculations benefits without knowledge
of the sometimes arcane underpinnings. Only when necessary, must a user

be faced with the more elaborate aspects of the system.

3. An Overview of Proposed Standard 754

The brew is surprisingly straightforward. Start with single and double
data formats of 32 and B4 bits, respectively. Suggest somewhat wider single-

extended and double-extended formats for use in expression evaluation to

1.7

alleviate intermediate overflow and underflow. Specify a complement of
rational arithmetic operations, and include square root, remainder, and
binary-decimal conversion. Finally, specify the machine arithmetic to be
closed under all operations on all operands. These ideas are expanded in the
rest of this section. Chapter B gives a top-down specification of the arith-

metic from the implementor’'s point of view.

The data formats are quite ordinary. Single has the range and precision
of the PDP-11 float format; double has the range of CDC 8000 class single for-
mat (a B0-bit word), which is widely used for scientific computing. The
extended formats have roots in the IBM 709x and Univac 1108 extended accu-
mulators; their widths in range and precision have been chosen to aid in

binary-decimal conversion and the computation of the exponential X7Y.

Square root is required by the standard because of its utility in certain
calculations, such as least squares, and because it is known to be just a
minor variation of division. Remainder is harder to implement, because so
many steps of division may be required before the dividend is reduced to half
the magnitude of the divisor. But remainder is vital to the argument reduc-
tion required for the elementary functions. Binary-decimal conversion, his-
torically in the province of the systems programmers or language implemen-
tors, is included so that tight error bounds can be specified, in lieu of correct
rounding which may be infeasible due to cost. Chapter 7 is an extensive
analysis of the bounds stated in 754. Appendix D shows a correctly-rounded
conversion implemented in Pascal. Other operations required by 754 are
means to access and modify the stafe of the arithmetic engine, for example,

the rounding modes and error flags.

1.8

It is arithmetic closure that gives 754 its true flavor. ToAcope with
overflow and computations like 1/0, signed = symbols were added to the
number system. And the sign of ~ was made to interact with the sign of zero
in the ordinary way, so that 1/ -~ = —0. The cost of this is a sign on zero
(unlike the real number system) which is sometimes misinformation when it
must be assigned arbitrarily, as with the result of 3.14 — 3.14. To cope with
underflow, the controversial denormalized numbers were added at the bot-
tom of the number range. Simply put, these values ensure that a difference
x —y is nonzero just when £ =v; on most current machines, the difference of
two tiny values will be flushed to zero if it falls below a certain threshold.
Chapter 5 discusses this issue in detail. Contention notwithstanding, arith-
metics with infinities and denormalized numbers had been implemented
before, for example on the CDC 8000 class machines and the Dutch Electrolo-

gica X8, respectively.

Closure of invalid operations like 0/ 0 and V-5 required a new kind of
symbol, for Not-a-Number. The so-called NaNs are a true innovation within
the standard. Although they are numerically trivial, since they propagate
unchanged through arithmetic, the NaNs have a considerable impact on the
overall architecture of a system, as mentioned with language issues below
and in Chapter 6. NaNs have already found use not only as diagnostic aids
but as placeholders for missing or unavailable data in spreadsheets and sta-
tistical applications. The key to the NaNs' utility is their propagation
through arithmetic operations; the “indefinite’’ operands in the CDC 6000
class computers and the *‘reserved’” operand in the DEC PDP-11 and VAX-11
computers trigger a (typically fatal) exception each time they are encoun-

tered, rendering them useless for carrying information.

1.9

4. Yet Another Standard — B54

When the 754 standard effort was nearing completion, a second standard
was launched under the chairmanship of William J. Cody [2]. What started as
a radix- and wordlength-independent standard devéloped into a binary-and-
decimal standard, with suggestions about the balance between the range and
precision to be provided in a given wordlength. The B854 standard was con-
strained to be upward compatible from 754. In fact, the drafts were
developed by simply medifying 754 in a text editor. The principal difference
is in the area of binary-decimal conversion, which is even more obscure when
the binary range and precision are not given specifically. Tables of inequali-

ties specify bounds for the allowable errors.

5. Axiomatic Attempts

"*Of course, if [the axiomatization of rounded floating-point arithmetic] is to
be useful, the axioms should be simple enough for each comprehension (sic).
I am afraid this goal has not yet been achieved.”

R. Mansfield (1984)

While standards 754 and 854 maintain essential backward compatibility
with arithmetics of the past, their main thrust is toward a future of greater
commonality among machines. A coincident development has attempted to
make numerical sense of the machines we must program for today. W. Stan
Brown characterizes a machine's arithmetic according to a set of parame-
ters [1]. The parameters describe the range and precision of the machine's
values that satisfy the criteria for Brown model numbers. On many machines
only a subset of the representable values, such as those not too huge or tiny,
or those with one or more trailing zero digits, are model numbers satisfying
constraints like commutativity of multiplication. Brown can confirm a

machine's parameters by running a crafty test program in portable FORTRAN

1.10

developed by Norm Schryer [8].

Brown’'s attempt to unify current arithmetics sheds further light on the
current state of affairs, but falls short of real utility for numerical program-
mers. First, since Brown stated as a design goal the development of axioms
pertinent to every major computer in use in the Free World, his axioms in a
sense inherited the worst properties of all the machines. They are subtle
indeed. It has been shown, for example, that because of a certain class of
division algorithms, one cannot infer from the model that the inequality
0 <z <y implies that z/y < 1. Problems like this will be nightmares for
programmers who would guarantee robustness [4]. Chapter 4 suggests FOR-
TRAN procedures for interrogating a system about parameters relative to

both Brown's model and the proposed standards.

By itself Brown's model is no more than further research into the
behavior of computer arithmetics, but when taken as the standard charac-
terization of arithmetic from which programmers must work, it can actually
hinder advances like the 754 and 854 proposals from taking effect by sfcrip-
ping their advanced features which, of course, don't fit into the "‘least com-
meoen denominator’” model. A step in this direction has been taken by the Ada
standards group, which has incoporated the ideas of the Brown model in the
Ada specification of arithmetic. Fortunately, the use of Ada packages per-
mits the incorporation of other arithmetics such as 754 and B54, albeit

inconveniently [5].

Brown’s is just the most computationally oriented of several attemnpts at
axiomatization. In 1966 A. van Wijngaarden uttered 32 rules for arithmetic,
introducing a tolerance operator to describe the deviation of machine arith-

metic from real arithemtic [10]. More recently, R. Mansfield has listed 45

1.11

axioms for computer arithmetic in order to prove that a qualifying arith-
metic is in fact rounded from an ordered field [7]. As he testifies in the

quote that opens this section, such a blizzard of axioms is incomprehensible.

6. An Algebraic Approach

Another recent development in arithmetic is worth brief mention in con-
trast with the 754 and 854 efforts. The latter have been dauntlessly prag-
matic. Most of what has been written, and this thesis is a prime example, has
centered on implementation details and the use of the arithmetic to solve
well-known problems. A much more formal approach has been taken by
Ulrich Kulisch and Willard Miranker as described in their book Computer
Arithmetic in Theory and Practice [6]. Their ultimate goal is a machine ana-
log to the algebra of vectors and matrices over the complex domain. The key
is the ordinary inner product calculation Z a; b;, which they specify to be
correctly rounded for all machine o; and b; except when overflow or
underflow intrude. That is, they implement the inner product as an atomic

operation through special hardware or software.

What detracts from the Kulisch-Miranker scheme for general use is the
cost of implementing the inner product algorithm. It requires what amounts
to a fixed-point buffer to hold the intermediate results of an inner product
lest there be massive cancellation, promoting tiny addends to the final
result. This buffer is as wide in radix digits as the extent of the exponent
range; applied to a format like the 754 double, it would be over 2000 bits
wide, virtually infeasible for VLSI implementation today. Moreover, their
scheme is sufficient to perform reliable computation, aided by devious algo-
rithms; there is no evidence that their scheme is necessary, nor that the

deviousness of their algorithms is unavoidable.

1.12

7. The Less Mathematical Alternative

Despite their appearance of mathematical rigor, the schemes described
in the last two sections miss the true goal of computer arithmetic — robust
calculations at a price users can afford. The important mathematical idea is
closure of the arithmetic system, for it is closure that leads to predictability
when the inevitable exceptional cases arise. Alas, it is here that the
mathematical purity fades and engineering appears, for deciding feasible
responses to exceptions involves design tradeoffs. This thesis demonstrates
that robust computer arithmetic is feasible in the current technology. The
underlying mathematical principle, closure, is clear from the start. The
difficulty lies in the careful analysis of all the boundary cases encountered

enroute.

B. Arithmetic and Languages — Future Directions

The substance of this thesis, implementation aspects of proposed stan-
dard 754, is just part of the story. What has really been specified in 754 is a
programming environment. Even after all these years, incorporation of the
full standard into programming languages has barely started. Chapter 3

touches on some of the issues, but there are many more.

The extended formats are strongly suggested by the standard, and are
known to be quite useful, but should they be made available in all languages?
Pascal, for example, specifies only one type, real, though enthusiasts would
extend the language by adding further ones. Arithmetic in C is based on the
PDP-11 float and double types. In C, it is natural to have the 754 extended
format play the role double did for the PDP-11, yet one wants both single and
double 754 types for data storage and exchange. The prospects for FORTRAN

have been discussed by R. J. Faternan [3].

1.13

Sometimes language extension to incorporate 754 features causes
conflict between two standards; for example, the BASIC standard specifies
that underflows should be flushed to zero, prohibiting the more useful gra-
dual underflow of 754. Cases like this led to the plea in Chapter 3 that
numerical issues be lifted from language standards and left to the domain of
numerical enthusiasts. However, some cases are not so clear. The details of
comparisons involving NaNs lie totally in neither camp, so some cooperation

will be required.

There is work in progress now to bring the full features of 754 and 854 to
people not only in high-speed numerical engines but in commodity calcula-
tors and computers as well. Attempts to expand the scope of the working
groups to include those responsible for languages have not been too success-
ful, partly because the number of people involved is much greater than the
few interested in arithmetic itself. When the 754 effort was begun, the stan-
dard was to have stood for twenty years. Now, seven years later, through the
cooperation of design, language, and systems people, the ideas spawned in
the working group are finally on the verge of dissemination among millions of

users.

8. References

[1] W. S. Brown, “A Simple But Realistic Model of Floating-Point Computa-
tion,” Computer Science Technical Report no. 83, May 1980, revised Nov.

1980; Bell Labs, Murray Hill, N.J., 07974.

[2] W.J. Cody, J. T. Coonen, D. M. Gay, K. Hanson, D. Hough, W. Kahan, R.
Karpinski, J. Palmer, F. N. Ris, and D. Stevenson, *'A Proposed Radix- and
Wordlength-Independent Standard for Floating Point Arithmetic,” to

appear in M/CRO, August 1984.

[3]

[4]

[5])

(6]

(7]

(8]

[s]

1.14

R. J. Fateman, “*High-Level Language Implications of the Proposed IEEE

Floating-Point Standard,”” ACM Transactions on Programming

Languages and Systems, 4, No. 2, April 1982, pp. 239-257.

¥W. Kahan, ““Why do we need a floating point arithmetic standard?" in

preparation.

H. Katzan, Jr., nvitation to ADA & ADA Reference Manual, Petrocelli,

New York, 1982.

U. Kulisch and W. Miranker, Computer Arithmetic in Theory and Prac-

tice, Academic Press, New York, 1981.

R. Mansfield, ""A Complete Axiomatization of Computer Arithmetic,"
Mathematics of Computation, 42, April 1984, pp. 623-635.

N. L. Schryer, “A test of a computer's floating-point arithmetic unit,”
Computer Science Technical Reporf No. 89, Bell Laboratories, Murray
Hill, N.J., February 1981.

G. S. Taylor, “‘Compatible Hardware for Division and Square Root,”
Proceedings of the 5th IEEE Symposium on Computer Arithmetic, Ann

Arbor, Michigan, May 1981, pp. 127-134.

[10] A. van Wijngaarden, **Numerical Analysis as an Independent Science,"

BIT, 86, pp. 66-81, 1966.

CHAPTER 2

The Original P754 Implementation Guide

The following paper, reprinted from Computer magazine with the
publisher’s permission, served as a P754 subcommittee working document
until its publication in January 1980. Although nominally a monograph, this
implementation guide reflected the many hours of debate about the form of
the ultimate proposed IEEE binary floating point arithmetic standard. As
published, the implementation guide was compatible with draft 5.11 of the
subcommittee’s formal proposal; an errata sheet at the end brings the guide

up to date with draft 8.0, as published in Compufer in March 1981.

This implementation guide grew out of an earlier document prepared in
collaboration with Harold S. Stone and W. Kahan. This author was primarily
responsible for an appendix consisting of tables specifying the details of the
operations. When it became clear that one inch sgquare table entries would

not suffice to describe the arithmetic, the current paper was launched.

Although every attempt was made to represent subcommittee decisions
in this implementation guide, it was inadequate for the subcommittee's pur-
poses. Most important, it did not satisfy the stylistic requirements for pro-
posed standards, set forth in the IEEE ‘‘blue book''. So work was begun on an
official version of the proposed standard. W. Kahan, John F. Palmer, Tom
Pittman, this author and, later, David K. Stevenson worked on this draft. This
implementation guide was published after the proposal had stabilized at
draft 5.11.

2.1

2.2

Draft 10.0 of proposal P754, as voted out of the floating point subcoms-
mittee, is fundamentally simpler than draft 8.0 as published in Computer
magazine and described here. The two principal changes to draft 8.0 were
the removal of the projective mode interpretation of = and the warning mode
interpretation of denormalized numbers. Draft 10.0 specifies only what were
known as the afline and normalizing modes for interpreting = and denormal-
ized numbers, respectively. Among the smaller changes to draft 8.0 were a
minor modification to the definition of underflow, a decoup!ling of the overflow
and underflow error flags from their respective traps, and a response to
overflow when rounding toward O that parallels the response when rounding

toward +e or —e«, according to the sign of the overflowed result.

The specifications of draft 10.0 are reflected in the pseudo-code descrip-
tion of the the standard in chapter B. This chapter presents the
specifications of draft 8.0; it is one of the few articles describing the pro-
posed standard as it stood for nearly two years (drafts 5.11 to 8.0 were essen-

tially identical), and as it was built in early implementations.

2.3

This guide to an IEEE draft standard provides practical
algorithms for floating-point arithmetic operations and suggests
the hardware/software niix for handling exceptions.

» SPECIAL FEATURE
An Implementation Guide to a
Proposed Standard
for Floating-Point Arithmetic

Jerome T. Coonen
University of California at Berkeley

This isan implementation guide® to a draft stan-
dard before an IEEE subcommittee whose goal is to
standardize binary floating-point arithmetic for
mini- and microcomputers. The purpose of the stan-
dard is to assure a uniform floating-point software en-
vironment for programmers. It may be implemented
entirely in hardware or software or, as is most likely,
in a combination of the two. This document provides
reasonable algorithms for the arithmetic operations
and suggestions for the hardware/software mix in
handling exceptions.

Except for its additiona! discussion of quad, this
guide is in concordance with Draft 5.11 of the pro-
posal titled, “A Proposed Standard for Floating
Point Arithmetic,” IEEECS Task P754/D2, by John
Palmer, Tom Pittman, William Kahan, David
Stevenson, and J. T. Coonen.** W. Kahan made
substantial contributions throughout the develop-
ment of this document, and Harold Stone prepared a
first draft in April 1978. J. Palmer discussed several
features of this standard in late 1977.#** Comments
may be sent to

Jerome T. Coonen
Department of Mathematics
University of California
Berkeley, CA 94720

“This is & much revised version of *‘Specifications for a Proposed
Standard for Floating Point Arithmetic,” Memorandum No.
UCB/ERL M78/72. This work was partially funded by Office of
Naval Research Contract NO0O14-76-C0013.

#2J. Coonen, W. Kahan, J. Palmer, T. Pittman, D. Stevenson, ‘A
Proposed Standard for Floating Point Arithmetic,”” SIGNUM
Newsletter, Special Issue, Oct. 1979, pp. 4-12. Aveilable from
SIGNUM, c/o ACM, 1133 Avenue of the Americas, New York, NY
10036.

¢®®J. Palmer, “The INTEL Standard for Floating Point
Arithmetic,” Proc. COMPSAC 77, pp. 107-112.

The standard precisely describes its data formats
and theresults of arithmetic operations; it must do so
to be of use to the producers of microprocessor hard-

~ware and software, who cannot afford to provide the

support software and personnel to perform conver-
sions between systems conforming to a less rigid
standard. It allows for future developments such as
interval arithmetic, which provides a certifiable re-
sult despite roundoff, Over/Underflow, and other ex-
ceptions. And it allows the use of reserved operands

* to extend the numerical data structure, with complex

infinities, say, or with pointers into heaps of numbers
with extended range and precision.

Programs which now run in higher-level languages
like Fortran should be portable to a system with the
new standard arithmetic at the cost of a modest
amount of editing and a recompilation, and then
should execute with results almost certainly noworse
than before, though programs which used to give in-
correct results might now give diagnostic messages
instead.

1.0 Narrative description of the standard
arithmetic

1.1 Sketch of the standard floating-point system.

Combinations of floating-point formats: one of
(A) single

{B) single and single-extended

(C) single and double

(D) single, double, and double-extended

(E) single, double, and quad.

Arithmetic operations:

Add, Subtract, Multiply, Divide, Remainder,
Square Root, Compare, Round to Integer, Con-
version between various floating-point and in-

teger formats, Binary-Decimal conversion.
Rounding modes:

(A) Round to Nearest, or optionally
(B) Round—to Nearest, toward 0, toward -+,
toward —eo,

Rounding precision control:

(A) Allow rounding of an extended result to the
precision of any other implemented format,
while retaining the extended exponent.

(B} When &ll operands have the same precision,
allow rounding of the result to that precision.

Infinity arithmetic:

(A) Affine mode: —o< 4o,
{B) Projective mode: —wo= 400,

Denormalized arithmetic:

(A) Warning mode
(B) Normalizing mode {optional).

Floating-point exceptions, with sticky flags and
specified results. The default responseis to proceed; a
trap to user software is optional.

(A} Invalid-Operation
(B} Overflow

(C) Underflow

(D) Division-by-Zero
(E) Inexact-Result.

1.2 Basic floating-point formats. Any nonzero real
number may be expressed in “normalized floating-
point’ form as * 2¢*f, where e isthe signed integer ex-
ponent and the significant digit field f satisfies 1 € <
2. The standard describes a machine representation
of a finite subset of the real numbers based on this
floating-point decomposition, and prescribes rules
for arithmetic on them.

There are three basic formats, single, double and
quad (See Table 1), to be implemented in one of the
combinations shown in Section 1.1. Single is required
since it is useful as a debugging precision and is effi-
cient over a wide range of applications where storage
economy matters.

A normalized nonzero number X in the single for-
mat (see Section 2 for double and quad) has the form

X = (—1)5#2E127%(1 F) where
sign bit
8-bit exponent biased by 127
=X's 23-bit fraction which, together with anim-
plicit leading 1, yields the significant digit field
S
The values 0 and 255 of E are reserved to designate
special operands discussed in later sections; one of
them, signed zero, is represented by E = F = 0. Nor-
malized nonzero single numbers can range in
magnitude between 2-126%1 000.. .00 and
2'27%1.111. . .11, inclusive.

The number X above is represented in storage by
the bit string

S
E
F

[s] E F

2.4

This encoding has the special property that the order
of floating-point numbers coincides with the lex-
icographic order of their machine counterparts when
interpreted as sign-magnitude binary integers,
facilitating comparisons of numbers in the same for-
mat.

1.3 Extended formats. To perform the arithmetic
operations on numbers stored in the single and dow-
ble formats, & system will generally unpack the bit
strings into their component fields S, E, and F.
Moreover, the leading significant bit will be made ex-
plicit, and perhaps the bias will be removed from the
exponent.

The standard provides a way to exploit this un-
packed format by admitting the optional single-
extended and double-extended formats (See Table 2).
If implemented at all, only one extended format
should be provided, single-extended in systems with
single only, and double-extended in systems with
single and double only.

Table 1.
Basic floating-point formats.
SINGLE DOUBLE QUAD
Fields and widths in bits:
S = Sign 1 1 1
E = Exponent 8 11 15
L = Leading bit [&D] (1) 1
F = Fraction 23 52 111
Total Width (1)+32 (1)+64 128
Sign: + /- represented by 0/1 respectively
Exponent: biased integer
Max E 255 2047 32767
Min E 0 0 0
Bias of E 127 1023 16383
Normalized numbers: (quad may be unnormalized)
Range of E (MinE + 1)t0o (Max E - 1)
Represented _ 138 » oE-Bas «
number (=17"e h
Signed zeros:
E Min E Min £ Min E
L (0) (0 0
F 0 0 0
Reserved operands:
Denormalized numbers:
E Min £ Min £ Min £
L (0} (0) 0
F nonzerc nonzerc nonzero
Represented Swnf - Buse
number (=1PT28 B LE)
Signed o's:
E Max E Max E Max
L {0) (0) 0or1
F 0 0 0
NaNs
E Max E Max E Max £
L (0) ()] Oort
F nonzero nonzero nonzero

F = system-dependent. possibly diagnostic, information

Page 2.5 unintentionally left blank.

(That is, the thesis page numbers are incorrect.)

Double-extended format (see Section 2 for single-
extended) consists of the following fields:

S=gign bit

E +B=biased exponent. E is a signed integer
spanning at least therange—16383 to 16384; the
bias B may be zero

L.F=a leading integer bit L followed by a frac-
tion F of at least 63 bits.

‘A number X is then given by X=(—1)5*2E-B¥(L_ F),

The case E = maximal-value is discussed in later sec-

_tions. Two possible implementations of E = minimal-

value are described below (Section 1.12, Denormal-
ized and unnormalized numbers); signed zeroisrepre-
sented by E = minimal-value and L.F = 0.0. Zerois
sometimes referred to as “‘normal zero” to distin-
guish it from the “unnormal zeros with E > minimal-
value and L.F = 0.0. The latter behave much as
nonzero numbers in the arithmetic operations.

To match the exponent range of quad the unbiased
double extended exponent must range between
—16383 and 16384 as indicated above. This suggests
that the exponent be represented in 15 bits by its
negative in two's complement, biased by 16383 asin
the basic formats, or biased by —1. The choice of the
exponent representation impacts the use of the
nonzero numbers at the bottom of the exponent
range.

Table 2.
Extended formats.

SINGLE-EXTENDED DOUBLE-EXTENDED
Fields and widths in bits:
S = Sign 1 1
E = Exponent 1 15
L = Leading bit 1 1
F = Fraction > 31 63
Total width > 44 B0
Sign: + / — represented by 0/1 respectively
Unbiased exponent: (may be stored with a bias)
Max E 3 1024 16384
MinE< ~1023 — 16383
Numbers:
Range of E (MinE + 1)to (MaxE - 1)
Represented number (—1)5*28(L.F)
Bottom of the exponent range:
E Min £ Min E
R Dor1 Dori
Represented number (- 1)5*28+R*(L F)
Signed zeros: use special indicator bits, or else ..
E Min E Min E
LF 0.0 0.0

Reserved operands:

Signed ='s: use special indicator bits, or else. ..
|3 Max E Max E
L Q0or1 o bort
F 0 0

NaNs: use special indicator bits, or else. ..
E Max E Max E
L Oort BDor1
F nonzero nonzero

F = system-dependent, possibly diagnostic, Information.

2.6
Extendeds are assumed to be few in number. The

first implementations of this standard will probably
allow access to extended entities only in assembly
language. High-level languages will use extended (in-
visibly) to evaluate intermediate subexpressions,
and later may provide extended as a declarable data
type.

The presence of at least as many extra bits of preci-
sion in extended as in the exponent field of the basic
format it supports greatly simplifies the accurate
computation of the transcendental functions, inner
products, and the power function YX. Infact, to meet
the accuracy specifications for binary-decimal con-
versions, some extended capability must be
simulated by system software if an extended format
is not implemented; this is discussed in Section 2.

Another way to obtain most of the computational
benefits of an extended format is to use the next
wider basic format. Indeed, quad is included in this
document as an alternative for those not wishing to
implement double-extended. In most implementa-
tions extended will be as fast as the basic format it
supports, as compared to a factor 2 or 4 loss in speed
suffered by the next wider basic format, if im-
plemented.

1.4 Arithmetic operations. The standard provides a
notably complete set of arithmetic operations (see
Section 1.1) in an attempt to facilitate program por-
tability by guaranteeing that results obtained using
standard arithmetic may be reproduced on different
computer systems, down to the last bit if no extended
format isused. SQUARE ROOT and REMAINDER
are included as primitive operations because they ap-
pear so often, for example in matrix calculations and
range reduction. REMAINDER is preferable to the
MODULO function because REMAINDER is com-
puted without rounding error. Consider, for example

0.01 MOD (—95} vs0.01 REM (~95)

on a 2-digit machine. MODULO yields the result
round (—94.99) = —95 for a complete loss of ac-
curacy, while REM AINDER yields the correct result
0.01. The standard’'s specification of minimal re-
quirements for binary-decimal conversions is an at-
tempt to allow comparison of data from different
systems at the decimal output level rather than via
hexadecimal dumps.

All operations except conversions between dif-
ferent data formats are presumed to deliver their
results to destinations having no less exponent range
than their input operands. This constraint avoids un-
necessary complexity in the implementation and
simplifies the responses to Over/Underflow. The rare
operation

double ® double ~ single
is required to function exactly as

double ® double ~ double
MOVE (round) double ~ single,

to assure identical results in all sequences of opera-
tions performed in the basic formats only.

Rather than prohibit mixed-format operations, the
standard is designed to encourage the provision of
some such operations. The sequence

(single * single = double) + double ~ double

ought to be available without the overhead of pad-
ding the single operands to double.

1.5 Accuracy and rounding. If the infinite precision
result of an arithmetic operation is exactly represen-
table within the exponent range and precision
specified for the destination, then it must be given ex-
actly. Otherwise the result must be rounded as
follows. Let Z be the infinitely precise result of an
arithmetic operation, bracketed most closely by Z1
and Z2, numbers representable exactly in the preci-
sion of the destination, but whose exponents may be
out of range. That is, Z1 < Z < Z2, barely. '
Round to Nearest(Z) = Unbiased Round (Z)
= the nearer of Z1 and Z2 to Z; in case of a tie
choose the one of Z1 and Z2 whose least signifi-
cant bit is 0.
Round toward Zero(Z) = Chop(Z) = smaller of
Z] and Z2 in magnitude. :
Round toward +(Z) = Z2.
Round toward ~«(Z) = Z1.

The latter two modes, the *'directed roundings.” are
intended to support interval arithmetic. Round
toward Zero is useful in controlling conversions to in-
tegers in accordance with conventions embedded in
programming languages like Fortran.

An implementation of the standard may support
either Round to Nearest only, with Round toward
Zero available for Round to Integer, or all four round-
ing modes. Round to Nearest shall be the default
mode for all operations. Calculation of Round to
Nearest requires the so-called sticky bit, as shown in
Section 2. Once the sticky bit is implemented, the
directed roundings may be supplied at very little ex-
‘tra cost, the bulk of which lies in the mechanism, say
mode bits or extra opcodes for exercising the choice of
rounding mode. While the standard leaves this
mechanism up to the implementor, the mode bits are
usuvally preferable. For example, an interval
arithmetic computation of upper and lower bounds,
performed by executing the same instructions round-
ing up during one pass ard down the next, is greatly
expedited if flipping a pair of bits changes rounding
modes.

In a system which delivers all floating-point results
except format conversions in the widest format sup-
ported, the user needs control over the precision to
which a result is rounded. Such a system would en-
courage the evaluation of long expressions in the
widest available format, with just one serious round-
ing error at the end when the expression's value is
stored in a narrower destination. But the standard’s
specifications for roundoff control are burdened by
the current programming languages which prohibit
mixed-precision calculation, and by the need to mimic
systems not providing an extended format. Round-
ing precision control is specified at the end of Section
2.14.

2.7

1.6 Exceptions. Once the data formats and opera-
tions are determined, there remains the specification
of responses to exceptional conditions. The standard
classifies the exceptions as Invalid-Operation,
Underflow, Overflow, Division-by-Zero and Inexact-
Result. They are discussed in the following sections.

The default response to any exceptionis todelivera
specified result and proceed. However, an implemen-
tation may provide optional traps to user software on
any of the exceptions. If available, the choice to trap
should be exercised at execution time via a trap-
enable bit. :

Associated with each of the exceptions is a
“sticky" flag which is guaranteed to be set on each oc-
currence of the corresponding exception when there
is no trap. The flags may be tested by a program and
may be cleared only by the user’s program. When the
end of & job is obviously at hand, a humane operating
system may draw the user's attention to flags still
set.

Since the sticky flags need not be set when a trapis
to be taken, an implementation may use them to in-
dicate which exceptions have just occurred. A trap
handler could determine which exception(s} arose on
the aborted operation by checking which have both
their sticky and trap-enable flags set, and would then
clear those flags at the end of the operation.

To deal effectively with traps, programmers need

~ certain vital information, such as what exceptions oc-

curred, where in the program, and what the operation

“and operands were. In response, the programmer will

normally either depart from the offending block of
code, fix up the aberrant result and resume execution,
or reinterpret the aberrant operands and recompute
theresult. The trap handler might be passed informa-
tion by value, with the option to *‘return’’ a result to
be inserted to the offending operation’s destination.
Orne might dispense with some of the above informa-
tion, for example when the correct result is available
in encoded form as in Over/Underflow.

1.7 Invalid-Operation. The Invalid-Operation excep-
tion arises in a variety of arithmetic operations on er-
rors not frequent or important enough to merit their
own fault condition. Some samples of Invalid-
Operations are:

(A} V=5

(B) (49} — (+) (See Section 1.8.)

(C) 0%,

One class of reserved operands, the Not-a-Number
symbols, or NaNs, are specified as the default results
of Invalid-Operations. In single, double, and quad
formats, with the format

[s] ¢] F]
NaNs are characterized by
S = gign bit (which may be irrelevant)

E =111...11
F #0.

In extended format NaNs have the most positive ex-
ponent. The leading significant bit in extended and

quad may be 0 or 1. The sign bit S participates in the
obvious way in the execution of statements like
X=-Yand Z=X—Y=X+{—Y)without loss of infor-
mation in the event that Y is a NaN with a numerical
connotation.

The nonzero fraction field F of a NaN will contain
system-dependent information. For example:

(A) A distinguished class of NaNs may be used by
an operating system to initialize storage. The
fraction of such a NaN may be a name or a
pointer to the region where the NaN is stored.

(B) A NaN generated by an invalid arithmetic
operation on numeric data, for example 0 * <o,
may be a pointer to the offending line or block of
code.

(C} When complex arithmetic is implemented, it is
often useful to think of « as a line rather than a
point in the projective plane. A distinguished
class of NaNs may be used in pairs to provide

the relative sizes and signs of the real and im- .

aginary parts of numbers tending to « along a
fixed ray emanating from the origin.)

(D) Sometimes an operation could generatearesult
acceptable but for its inability to pack that
result correctly into the intended destination
(see the discussion of Over/Underflows). In
such & case, a NaN could be supplied, with a
fraction pointing to an extended field or a heap
where the correct result may be found.

{E) Sometimes a subroutine may encounter data
for which only a partial result can be delivered
in the time available. The rest of the result can
be replaced by NaNs pointing to a piece of the
program which will resume execution of that
subroutine only if that undelivered portion of
the result is really needed. :

(F) List-oriented systems like LISPmay use single
format NaNs to point to double numerical data.

As the list above shows, there are two distinct
types of NaNs. The Nontrapping NaNs, as in (A) and
{B), propagate through arithmetic operations

. without precipitating exceptions. If two such NaNs
are picked up as operands, the result is one of the
operands, according to a system-dependent
precedence rule. On the other hand, the Trapping
NaNs would be useful in situations (C} through (F),
where an Invalid-Operation trap to user software is
required to perform arithmetic on the special
operands; when the trap is disabled, a Nontrapping
NaN results. The two types of NaNs might be
distinguished by the leading bits of their fractions.

1.8 Underflow. Because of thecare takeninthe treat-
ment of Underflows, the range of normalized
numbersin single, double, and quad formats has been
chosen to diminish slightly the risk of Overflow com-
pared with the risk of Underflow. This was done by
picking the exponent bias and alignment of the
binary point in the significant digit field in sucha way
that the product of the largest and smallest positive

2.8
normalized numbers is roughly 4 in each of the basic
formats.

Underflow occurs if the exponent of a result, tested
before or after rounding at the implementor’'s option,
lies below the exponent range of the destination field,
or if the rounded extended or quad result of a
MULTIPLY or DIVIDE with nonzero. finite
operands is normal zero. Note that a product or quo-
tient of grcssly unnormalized numbers may have a
zero significant digit field; the test above prohibits
such a result from masquerading as a normal zero
when the operand exponents fortuitously add to the
format’s minimum,

Because of the restrictions on arithmetic opera-
tions presumed in Section 1.4, the exponent can be
out of range by at most a factor of 2, except for the
MOVE instruction which is discussed in Section 2. If
the Underflow trap is enabled, the exponent is
wrapped around into the desired range with a bias ad-
Just specified in Section 2, and the resulting value is
delivered to the trap handler. The exponent wrap-
around is chosen so that the result, while related in a
simple way to the Underflowed value, lies somewhere
in the middle of the numerical range of representable
numbers. This diminishes the risk that a computa-
tional response (like scaling) to Underflow will en-
counter almost immediately a rash of consequent
Overflows. The analogous statement holds for
Overflows.

If the Underflow trap is disabled. the result is
denormalized by right-shifting its significant digit
field while the exponent is incremented until it
reaches that of the smallest normalized number
representable in the destination. Then the result is
rounded to fit into the destination.

Note that denormalization is performed before
rounding, to avoid double-rounding problems. If the
Underflow test is made on a rounded result, that
result must be ‘“unrounded” before undergoing
denormalization. The difference between testing
Underflow before and after rounding is that the
Underflow threshold (i.e. the largest infinite preci-
sion number that Underflows) is the higher in the lat-
ter case by one quarter of a unit in the last place of the
smallest normalized number; however, both im-
plementations yield exactly the same numerical
values.

In terms of the format

[s] &] F

a nonzero denormalized single number X (see Section
2 for the other formats) is encoded as

S =signbit
E =0
F = X’s 23 significant bits (at least one of which
must be nonzero) to the right of the binary point.
X is reconstructed via the formula
X = (—1)5%2 1820 F) |

observing that E is not the true biased exponent in
single format. Comparing this formula with its

analog for normalized numbers, one sees that, when
unpacking a denormalized number, the 1-bit that
would have gone to the leading bit of the significant
digit field for a normalized number is instead added
into the unbiased exponent E—127+1.

The denormalized numbers and signed zeros are
the reserved operands corresponding to a biased ex-
ponent of zero. The values +0 are obtained just when
F=0 above. Zero may result from an Underflow,
depending on the rounding mode, when the
Underflow is so severe that all nonzero bits are
shifted out of the significant digit field.

1.9 Overflow. 1f the exponent of a rounded result of
an arithmetic operation overflows the range of the
destination, then the Overflow exception arises. ex-
cept when Invalid-Operation intcrvenes because a
single or double result is not normalized. Hatrapisto
be taken, then the exponent is wrapped around as
discussed in Underflow {Section 1.8), except that the
bias adjust is subtracted rather than added.

H notrapis to be taken, then the result depends on
the rounding mode and the sign of the result, as
discussed in Sectior; 2. One possibleresult is =, which
in single, double, and quad formats with the bit pat
tern

Ls[¢] F l

is encoded as

S = signbit
E =111 11
F =0.

Inthe extended formats E = maximal-valueand F =
0. The explicit leading bit L in extended and quad
may beOor1.

The ='s are given two interpretations. In Affine
mode

—o <{real numbers} < 4+,

which is appropriate for most engineering calcula-
tions involving exponentials or disparate time con-
stants or = 's generated by Overflows. The sign of = is
ignored in Projective mode, which is useful for real
and complex rational arithmetic. for continued frac-
tions, and for ='s generated by division by zeros not
generated by Underflows. Systems shall provide an
Affine/Projective mode bit so that the choice can be
made under program control. Projective mode is the
default because it is less likely to be abused unwit-
tingly.

1.1¢ Division-by-Zero. The Division-by-Zero excep-
tion arises in a division operation when the divisor is
normal zero and the dividend is & finite nonzero
number. The default result is e with sign according
to convention.

1.11 Imexact-Result. The Inexact-Result exception
arises when a roundoff error is committed in an
arithmetic operation. It is intended for essentially in-
teger calculation as in Cobol and to facilitate

2.9

multiple-precision calculation. The default result is
the correctly rounded number.

1.12 Denormalized and unnormalized numbers In
this document an unnormalized number is one whose
leading significant bit, whether implicit or explicit. is
zero. Denormalized numbers, nonzero unnormalized
numbers in a given format whose exponents arc the
format's minimum, were introduced as the deisult
results of Underflows. They are designed not so much
to extend the exponent range, but rather to allow tur-
ther computation with some sacrifice of precision in
order to defer as long as pussible Lhe need to deciac
whether the Underflow will have significant conse
quences.

While in extended and guad formats. with their ex-
plcit leading bits, unnormalized nuisters LAY FabLg
over the entire exponent range, the only unnormal-
ized numbers that may be represented in stnglc and
double formats are denormalized.

Section 2 specifies the results of arith.i tic opela
tions on unnormalized operands; in each case the
algorithms are essentially the same as for norsasiized
operands. The only unnormalized result possible wiin
normalized operands is a denormalized number on
Underflow.

The usual mode of arithmetic on unnormalized
numbers. which may be called Warning mode
recognizes operands’ unnorn.alized character. Bus
the standard allows an optional Normahzing node 1
which all results are computed as though all deno
malized operands had first been normabized. In
system that offers both, Warning mod(shall be the
default, and selection of modes shall be exercised via
a single-mode bit accessible to programmers.

Normalizing mode precludes both the creation of
any unnormalized numbers other than denormalized
numbers. and Invalid-Operations due to the inability
to store an unnormalized result in a single or double
destination. 1t might be used by a programmer who
has given some thought to Underflow, since. in most
cases. the error due to denormalization on Underflow
is no worse than that due to roundoff. Normalizing
mode sacrifices the diagnostic capability of the un-
normalized numbers for the predictability of nor
malized arithmetic. But if unexpected unnormalized
{but not denormalized) operands are somehow picked
up in that mode, they are operated on as in Warning
mode.

Because it is so often desired, Normalizing mode 15
recommended for all systems, especially those
without an extended format to hold unnormalized in-
termediates. In fact, the Normalizing mode is op-
tional primarily to free the high-performance pipe
lined array processors from the extra normalizing
step at the start of each operation; such systems will
probably compute their intermediates in extended.

Another way to perform unnormalized arithmetic
in extended format is according to the rules of
significance arithmetic. This would be regarded as an
{expensive) enhancement of the standard. 1f quad is
implemented, then unnormalized arithmetic should

be performed as significance arithmetic to take ad-
vantage of the extravagant word size.

As mentioned in the discussion of the extended for-
mats, the standard does not exactly specify the inter-
pretation of the nonzero numbers whose exponents
are the format’s minimum. One natural implementa-
tion simply extends the exponent range one unit, in-
terpreting a number with the format’'s smallest expo-
nent as it would any other nonzero number. A prob-
lem arises since normal 0 can be the unexceptional
product or quotient of grossly unnormalized or denor-
malized numbers. To protect against this anomalous
situation, the standard specifies that such a product
or quotient be marked as an Underflow. The extra
test for normal zero is required after a product or quo-
tient of nonzero numbers.

An alternative encoding of denormalized numbers
in extended and quad formats uses a redundant expo-
nent to permit numbers denormalized by Underflow
to be distinguished from unnormalized numbers at
the bottom of the exponent range which are the
results of operations on unnormalized operands. Ina
scheme with biased exponent, with the notation in-
troduced earlier,

(A) The nonzero normalized numbers with E=0
have exactly the same numeric connotation as
their counterparts with E=1.

(B) The nonzero nonnormalized numbers with
E =0 and F#0 have the same numeric connota-
tion as the corresponding numbers with E=1.
Those with E=0 are denormalized while those
with E=1 are unnormalized. '

(C) The numbers with E=L=F=0 are the signed
normal zeros. The numbers with E>1 and
L=F=0 are unnormal zeros.

In this representation normal zero can never be the
product or quotient of nonzero operands unless expo-
nent Underflow occurs (i.e., biased exponent less than
1), simplifying the test for Underflow. Also, in
systems which implement Normalizing mode, there
is a distinction between denormalized numbers and
unnormalized numbers at the bottom of the exponent
range. Another advantage, for those who implement
the standard in hardware that traps to system soft-
ware in ell exceptional circumstances, is that
E=maximal-value and E=minimal-value are the
conditions for a hardware trap on “exceptional
operand.”

1.13 Hardware vs user traps. The standard specifies
the trap options for exceptions independently of
whether the implementation is in hardware, soft-
ware, or a combination of the two. These are system
traps to software that the user has either written or
invoked from a system library. They are to be dis-
tinguished from hardware traps in the arithmetic
unit.

One possible hardware/software implementation
would provide a hardware trap to system software on
every Over/Underflow. The system software would
then test the trap option flag and either deliver the

2.10

specified result and proceed, or trap touser software.
In this case the exceptions’ sticky flags and trap-
enable bits could be in software. It is important to
note that if the hardware trap provided the correctly
rounded result with an extended exponent, then the
system software would require sufficient informa-
tion to “unround’’ the number in case a denormalized
result is to be delivered on Underflow; otherwise a
second rounding could occur during denormalization,
in violation of the standard.

The Invalid-Operation and Division-by-Zero excep-
tions could be handled by similar hardware/software
combinations.

Inexact-Result requires more care. Because this ex-
ception will arise (and be ignored) so frequently in
floating-point computations, it is impractical to have
a hardware trap executed on every occurrence. If the
Inexact-Result exception is to be handled by a hard-
ware trap and system software, then that trap should
be maskable. In one possible implementation:

(1) The trap would be masked off until . . .

(2) enabled by the library routine invoked by the
user to clear the Inexact-Result sticky flagor to
ensable the user trap, and . . .

(3) on the first occurrence of a rounding error, the
hardware trap would set the sticky flag. The
user trap would be invoked if enabled; other-
wise the system software would disable the
hardware trap and resume execution. leaving
the sticky flag as an indication of a rounding er-
ror.

A possible hardware trap on denormalized operand
was mentioned at the end of the last section. A
system implementing the Normalizing mode of com-
putation would have software test the Warning/Nor-
malizing mode bit and normalize the denormalized
operand if necessary, handling the details of extend-
ed exponent range required to represent the operand
as normalized.

2.0 Specifications for a conforming
implementation of standard arithmetic

2.1 Fioating-point formats. Single, double, and quad
are the basic floating-point formats. A standard
system shall provide single only, both single and dou-
ble, or all three basic formats. In addition, either of
the first two systems above may provide the extend-
ed format corresponding to the wider basic format
supported. The formats are described in Tables 1 and
2.

2.2 Data types. This standard defines the following
floating-point data types: normalized numbers,
denormalized numbers, unnormalized numbers
(available only in extended and quad), the normal
zeros (+0), £ and the NaNs. They are described in
detail in Tables 1 and 2.

A standard system must produce denormalized
numbers as the default response to Underflow: un-

normaslized numbers are their descendants in extend-
ed or quad. A system may optionally allow users to
normalize all denormalized numbers when they ap-
pear as input operands in arithmetic operations. This
shall be called Normalizing mode in contrast to the
default, Warning mode. The choice of Normaliz-
ing/Warning modes shall be made via a single bit ac-
cessible to users.

Signed =’s are produced as the default response to
Division-by-Zero and certain Overflows. Systems
shall provide = arithmetic as specified. Users must
be able to choose, via a single-mode bit, whether +
will be interpreted in the Affine or Projective closures
~ of the real numbers. The sign of « is respected in Af-
fine mode and ignored in Projective, the default.

NaNs are symbols which may or may not have a
numeric connotation. Nontrapping NaNs are intend-
ed o propagate diagnostic information through
subsequent arithmetic operations without triggering
further exceptions. Trapping NaNs, on the other
hand, shall precipitate the Invalid-Operation excep-
tion when picked up as operands for an arithmetic
operation. Systems shall support both types of
NaNs. In the event that two Nontrapping NaNs oc-
cur as operands in an arithmetic operation, the result
is one of the operands, determined by a system-
dependent precedence rule.

2.3 Arithmetic operations. An implementation of
this standard must at least provide:

(A} ADD, SUBTRACT, MULTIPLY, DIVIDE,
and REMAINDER for any two operands of the
same format, for each supported format, with
the destination having no less exponent range
than the operands.

{B) COMPARE and MOVE for operands of any,
perhaps different, supported formats. :

{C) ROUND-TO-INTEGER and SQUARE ROOT
for operands of all supported formats, with the
result having no less exponent range than the
input operands. In the former operation, round-
ing shall be to the nearest integer or by trunca-
tion toward zero, at the user’s option.

(D) Conversions between floating-point integers in
all supported formats and binary integers in
the host processor.

(E) Binary-decimal conversions to and from all
supported basic formats. Section 2.21
describes one possible implementation.

2.4 Exceptions. One or more of five exceptional con-
ditions mey arise during an arithmetic operation:
Overflow, Underflow, Division-by-Zero, Invalid-
Operation, and Inexact-Result.

The default response to an exception is to deliver a
specified result and proceed, though a system may of-
fer traps to user software for any of the exceptions.
These traps shall be enabled via bits accessible to pro-
grammers.

A system providing a trap on an exceptional condi-
tion should give sufficient information to allow cor-

2.11
rection of the fault and allow processing to continye
at the point of the error or elsewhere, at the option of
the trap handler. The correct result may be encoded in
the destination’s format (or even in the destination)
orin a heap pointed to by a NaN. On the other hand. if
no numeric result can be given, the opcode and aber-
rant operands must be provided: the trap handler
should be able to return a result to be delivered to the
destination.

Associated with each of the exceptions is a sticky
flag which shall be set on the occurrence of the cor-
responding exception whenno trapis tobe taken. The
flags may be sensed and changed by user programs,
and remain set until cleared by the user.

2.5 Specifications for the arithmetic operations. For
definiteness the algorithms below specify one con-
forming implementation. Single, double, and double-
extended formats are implemented; the exception
flags are set on every occurrence of the corresponding
exception; the extended exponent is biased by 16383,
There are many alternative conforming implementa-
tions. Those arithmetic operations, except Decimal
to Binary conversion, which deliver floating-point
results rather than strings or binary integers are
broken into three steps:

{0) If either operand is a Trapping NaN, then
signal Invalid-Operation and proceed to Step 2.
Otherwise, if the Normalize bit is set, then nor-
malize any denormalized operands.

(1) Compute preliminary result Z and, if numeric,
round it to the required precision and check for
InvalidiOver/Underflow violations. This step
is peculiar to the specific operation.

{2) Set exception flags, invoke the trap handler if
required, and deliver the result Z to its destina-
tion. The second step is the same for all opera-
tions except REMAINDER and MOVE; the
minor differences are noted.

The following table is used in the specification of
Step 1 of the operations with two input operands. It
singles out the cases involving special operands.

Y
Xopy +0 w *+w NaN
*0 a b c \
X w d e 1 A
EXS 5 h i Y
NaN X X X M

W is any finite number, possibly unnormalized but
not normal zero. While X and Y refer to the input
operands, the entry M indicates that the system's
precedence rule is to be applied to the two Nontrap-
ping NaNs.

Preliminary numeric results may be viewed as:

T T O N A S A AR

where V is the overflow bit for the significant digit
field, N and L are the most and least significant bits,

G and R are the two bits beyond L, and S, the sticky
bit, is the logical OR of all bits thereafter.

2.6 ADD/SUBTRACT. For subtraction, X~Y is
defined as X +(—Y).

a: Zis 40 in rounding modes RN, RZ, RP, or if
both operands are +0; Z is —0 in mode RM or
if both operands are —0.

Z=Y.
Z=X.

b,d,e: (Note thatin cases b and d, a narrow rounding
precision may cause the result to differ from
the nonzero input operand.) Compute:

(1) Align the binary points of X and Y by un-
normalizing the operand with the smaller
exponent until the exponents are equal.

_ Note whether either of the resulting
significands is normalized for (3) below.
Add the operands.

Addition of magnitudes: If V=1, then
right-shift one bit and increment exponent.
During the shift R is ORed into S.

{3} Subtraction of magnitudes:

(8) If all bits of the unrounded significant
digit field are zero: Set the signto '+ "
in rounding modes RN, RZ, RP, and set
the sign to *‘—"" in mode RM. Then, if
either operand was normalized after
binary point alignment in (1), the expo-
nent is set to its minimum value, i.e.,
the result is true zero.

Cef

gh

(2

{b) Otherwise: If, after binary point align-
ment in (1), neither operand was nor-
malized, then skip to (4). Otherwise,
normalize the result, i.e., left-shift the
significand while decrementing the ex-
ponent until N=1. S need pot par-
ticipate in the left shifts; zero or S may
be shifted into R from the right.

{4) Check Underflow, round, and check Invalid
and Overflow.

i: In Affine mode (+) + (+)~ (+=)and (—=) +
{—o0) = (—e), In Affine mode on (+) + (—)
and (—=) + (4}, and in all cases in the Projec-
tive mode, signal Invalid-Operation, and if &
result must be delivered, set Z to NaN.

2.7 MULTIPLY.
a,b,d: Z=0 with sign.

c.g: Signal Invalid-Operation. If & result must be
delivered, set Z to NaN.

¢: If either operand is an unnormal zero, proceed 88
in c; otherwise, compute:

(1) Generate sign and exponent according to
convention. Multiply the significands.

{2) 1f V=1 then right-shift the significand one
bit and increment the exponent.

2.12

{3) Check Underflow, round, and check Invalid
and Overflow.

f.hi: Z=o with sign equal to the Exclusive-Or of
the operands’ signs.

2.8 DIVIDE.

a,i: Signel Invalid-Operation and if a result must be
delivered, then set Z to NaN.

b,c.f: Z=0 with sign. Exception: if X is an unnor-
mal zero, proceed as in a.

d: Z== with sign. Signal Division-by-Zero.
Exception: if X is an unnormal zero, proceed as
in a.

e: If Y is unnormalized, proceed as in a; other- -
wise, compute:

(1) Generate sign and exponent according to
convention. Divide the significands.

(2) If N=0, then left-shift significand one bit
and decrement exponent. S need not par-
ticipate in the left shift; a zero or S may be
shifted into R from the right.

{3) Check Underflow, round, and check Invalid
and Overflow.

g.h: Z=o with sign.

2.9 REMAINDER. Form the preliminary result Z =
remainder when X is divided by Y, with integer quo-
tient Q. Q does not participate in Step 2 of the opera-
tion unless an exception is raised there, in which case
if Z is set to NaN, then Q is assigned the same value.
The sign of Q is the Exclusive-Or of the input
operands’ signs. The standard does not require the
quotient Q.

a,d,gh,i: Signal Invalid-Operation. If results must
be delivered, then set Z and Q to NaN.

b,c: If Y is unnormal zero, proceed as in a; other-
wise Z=X and Q = 0.

e: I{ Yisunnormalized, proceed as in a. Otherwise,
normalize X and compute:

{1) Set Q to the integer nearest X/Y computed
to as many bits as necessary to round cor-
rectly: if X/Y lies halfway between two in-
tegers, set Q to the even one. If Q contains
more significant bits than its intended
destination (the number may be great if
X>>Y), then discard the excessive high-
order bits.

{2) Set Z to the remainder, X—(Q*Y). Nor-
malize Z, check Underflow, round, and
check Invalid and Overflow. There is no
rounding error if the destination precision
is no narrower than X's and Y's.

. Q=0and Z=X.

210 ROUND-TO-INTEGER. Set Z to X if X is +0,
+ o, or NaN; otherwise, compute Z: If X 'sexponentis
so large that it has no (zero or nonzero} significant

fraction bits, then set Z to X; else:
(1) Right-shift X's significand while incrementing
the exponent until no bits of the fractional part
of X lie within the rounding precision in effect.

{2) Round Z. The user must have the option of
rounding by truncation as well as to the nearest
integer.

If all of the significant bits of Zare 0, then set Z
to normal zero with the sign of Z; otherwise,
normalize Z. S, which was set to zero afier round-
ing in (2), need not participate in the left shifts
of normalization; zero or Sis shifted into R from
the right.

3

—

2.11 SQUARE ROOT. Z=yX. If X is =0 or NaN,
then set Z to X. If X is unnormalized or —, then
signal Invalid-Operation and if a result must be
delivered, set Z to NaN. If X is +o, then in Affine
mode set Z to X and in Projective mode proceed as for
—C0

If X is positive, finite, and normalized, compute
Z=\/¥ to the number of bits required to get a correct-
ly rounded result, and round Z. Only two bits of Z
‘beyond its rounding precision are required, if that
precision is no narrower than the precision of X.

If X is negative, finite, and normalized, signal
Invalid-Operation. If a result must be delivered, set Z
to NaN.

212 MOVE. MOVE X — Z (convert between dif-
ferent floating-point formats) is an operation whose
destination may have shorter range and precision
than its source operand, in which case it performs an
arithmetic operation. If X is +0, =, or NaN, set Z to
X. Otherwise, check X for Underflow, round to the
precision of the destination, and check for Invalid
and Overflow.

On Over/Underflow with the corresponding trap
enabled, the exponent may be more than a factor of 2
(i.e., one bit) beyond the range of the destination, so
the exponent wrap-around scheme will not work. One
way to cope is to deliver to the trap handler the result
in the format of the source, or in the widest format
supported, but rounded to the precision of the
destination. Another way involves a heap onto which
is put the rounded value whose exponent lies beyond
the range of the intended destination; into the
destination would go a NaN pointing to that value in
the heap.

2.13 Detection of Underflow. If the exponent of the
nonzero preliminary resuit underflows the intended
destination, then signal Underflow and, if the
Underflow trap is disabled, denormalize it as follows.
Shift the significant digit field right while increment-
ing the exponent until it reaches its most negative
allowable value. During each right-shift the R bit is
ORed in to the S bit, itself not shifted. If the trap is
enabled then, except for the MOVE operation, theex-
ponent is wrapped around &s described under Bias
Adjust {Section 2.16).

2.13

Another instance of Underflow, tested after round-
ing, is & normal zero extended or quad product or quo-
tient of operands neither of which is normal zero. This
special case is precluded by the redundant exponent
scheme discussed in Section 1.12.

2.14 Rounding. Four rounding modes are described
by the standard:

RN — Round to Nearest

RZ — Roundtoward Zero
RM — Round toward —
RP — Round toward + .

An implementation of the standard may support
either RN only, with RZ for Round to Integer, or all
four rounding modes. RN shall be the default mode
for all arithmetic operations. The rounding mode may
be specified by, say, preset mode bits, rounding mode
options in each instruction, or rounding instructions
which can follow the operation whose result is re-
rounded, but not double-rounded.

The preliminary result Z, to be rounded, may be
viewed &s in Section 2.5. S, the sticky bit, assures a
result rounded as though first computed to infinite
precision. From Z determine Z1 and Z2, the numbers
representable in the desired rounding precision that

most closely bracket Z. Since Overflow is not checked
until after rounding, the exponent of Z1 or Z2 or both
may be overflowed.

If Z1=2=22, there is no rounding error and
RNI(Z}=RZ(Z)=RP(Z)=RM(Z)=Z. Otherwise, signal
Inexact-Result, and

RN(Z)=the nearer of Z1 and Z2 to Z; in case of a tie
choose the one of Z1 and Z2 whose least signifi-
cant bit is 0.

RZ(Z) = the smaller of Z1 and Z2 in magnitude.

- RM(Z)= Z1.

RP(Z)= Z2.

When a system supports an extended format, it
must provide users with the option of rounding to &
shorter basic precision a result intended for a wider
extended destination. Also, when all operands in an
operation are of the same format, it shall be possible
to round the result to the precision of that format.
The specification of that option will require at most
two bits of information: one enables precision control;
one specifies whether rounding to single or double
precision, effective only when precision control is
enabled.

2.15 Detection of Invalid and Overflow. If an unnor-
malized, but not denormalized, number is destined
for a single or double destination, the Invalid-
Operation exception arises. Otherwise. . .

1fZ's exponent overflows the intended destination,
then signal Overflow and., if the corresponding trap is
enabled, adjust the exponent bias as specified under
Bias Adjust (Section 2.16).

On Overflow with the trap disabled, signal Inexact-
Result. Then set Z to e with the sign of Z if the round-
ing modeis RN, RZ, RP and Zis positive,or RM and Z
is negative. Otherwise, if Z is normalized, set Z to the
largest normalized number representable in the
destination field, with the sign of Z; and if Z is not nor-
malized. simply set Z's exponent to that of the for-
mat's largest normalized number.

2.16 Bias Adjust. On Over/Underflow, with the cor-
responding trap enabled, the exponent of a rounded
result Z is wrapped around into the required range of
the destination. Compute A = 192 in single, 1536 in

double, 24576 in quad, and 3*2"2 in extended, where -

n is the number of bits in the exponent. On Overflow
subtract A from Z's exponent; on Underflow add A to
Z’s exponent.

This scheme works only when the Over/Under-
flowed exponent exceeds its destination’s range by a
factor no larger than 2. The only exception in this im-
plementation is discussed under MOVE (Section
2.12).

2.17 Step 2 of arithmetic operations. Preliminary
result Z was developed in Step 1.

(1} In modes RP and RM, ‘‘undo” any Over/
Underflow signals whose traps were enabled.

(2} If the Invalid-Operation exception was sig-
naled, produce a diagnostic Nontrapping NaN
as the preliminary result Z.

2.14

(3} Set the sticky exception flags corresponding to
the exceptions signaled. Trap if any exception
has been signaled whose corresponding trap is
enabled, allowing Z to be modified before
delivery to the destination.

(4) Deliver Z to its destination.

2.18 FLOATING-TO-INTEGER. This instruction
converts a floating-point number X into a binary in-
teger of the host processor. If X is a NaN or o, then
leave the destination unchanged and set the Invalid-
Operation bit, trapping if the corresponding trap is -
enabled.

For finite X, replace X by ROUND-TO-INTE-
GER(X). Convert X to an integer in the desired for-
mat and write the result into the destination. 1f X
overflows the destination field, then truncate ex-
cessive high-order bits and signal Integer-Overflow
in the host processor, if it recognizes such an excep-
tion; otherwise, set the Invalid-Operation sticky flag
and trap if enabled.

219 INTEGER-TO-FLOATING. Map the binary in-
teger X in the host processor into a floating-point in-
teger. If X cannot be represented exactly, then round
as described in Rounding and set the Inexact-Result
bit, trapping if the corresponding trap is enabled.

2.20 COMPARE. A floating-point comparison can
have precisely one of four possible results (condition
codes): <, =, >, and unordered. When the result is
reported as the affirmation or negation of a predicate,
the following implications determine that response:

= affirms €, =, and 2, and denies <, >, and un-
ordered.

< affirms < and € and denies =, 2, >, and un-
ordered.

> affirms > and > and denies <, €, =, and un-
ordered. .

unordered affirms unordered and denies <, €, =,
#,and >.

When two values that are unordered are compared
via the predicates <, €, 2, >, or their negations, then,
in addition to the response specified, the Invalid-
Operation flag is set and the trap invoked if enabled.

The following table specifies the compare opera-
tion. Unnormalized (and denormalized) operands are
treated as though first normalized.

- . -+ ©o oo |
Xvsy Atine Finite Affine Projective Nak
-—0

Affine = < < N/A 3

Finite > b < a a

-+ oo

Affine > > N/A E]

o

Projective N/A a N/7A = 2

NaN a] a a a

a: unordered.

b: The result is based on the result of X~Y. The
subtraction may not have to be carried out com-
pletely, and the possible Underflow and
Inexact-Result exceptions are suppressed.

2.21 Radix conversion. A system must provide stan-
dard conversion to and from its basic formats. The
specifications are a compromise designed to ensure
that conversions are uniform and in error by less than
one unit in the last place delivered, at & nearly
minimal cost. The scheme below meets the re
quirements for single and double.

The particular decimal character code and format
are unspecified. The decimal field widths are:

single: up to 2-digit exponent and up to 9
significant digits.

double: up to 3-digit exponent and up to 17

significant digits, with the option of using up to 19
digits in decimal-to-binary conversion.

Two functions perform conversions between
binary floating-point integers and character strings
consisting of a sign followed by one or more decimal
digits. BINSTR converts a binary floating-point in-
teger X, rounded to the nearest integer, to a signed
decimal string. STRBIN converts a signed decimal
string with at most 9 digitsin single, and 19 in double,
to a binary floating-point number X whose value is
that of the decimal integer the string represents.

The function log,, is required and may be com-
puted from the formula

log,(X) = log, (X) * log,,(2).

It need be computed only to the nearest integer for
this celculation. Log,(X) may be approximated by
X’s unbiased exponent. Within the conversion pro-
cess, arithmetic must be done with at least 32 signifi-
cant bits for single and 64 bits for double.

Powers of 10 not exactly calculable in the stated
precision shall be procured from tables. The following
tables require minimal storage:

(A) Systems with single precision only: 103 can be
represented exactly with 32 significant bits. To
cover the range up to 10%, a table with the
gingle entry 1026 suffices.

(B) Systemswith both single and double precisions
only: 1027 can be represented exactly with 64
significant bits. To cover the range up to 1038,
atable of 10%4, 10!% and 1026 suffices.

Binary-floating-to-Decimal-floating. Given binary
floating-point number X and integer k with 1< k< 9
for single precision and 1< k € 17 for double precision,
compute signed decimal strings I and E such that I
has k significant digits and, interpreting I and E as
the integers they represent,

X=1*10E+1-k = gd ddddddd * 10F

where 5 is the sign of X and the d's are the k decimal
digitsof 1.

(1) Specialcases: If X is 40, —, or NaN, delivera
nondecimal string, for example, ++, ——, ..,

2.15

respectively. If X is zero, then return +0 or ~0
as appropriate. Otherwise . . .

{2} Set X toits absolute value, saving its sign.

{3) Hf Xis normalized, compute U=log, (X); other-
wise let U=log, (smallest normalized number).

(4) Compute V=U + 1—k, rounded to an integer
in mode RZ. :

(5) Compute W=X/10", rounded to an integer in
mode RN,

(6) AdjustW:

IfW210%+1, then increment V and go to (5).
1f W=10%, then increment V, divide W by 10
(exactly), and go to (7).

If W€104-1—~1 and X was normalized in (3),
then decrement V and go to (5).

{7) Return I=BINSTR(W with sign of X} and
E=BINSTR(V).

Decimal-floating-to'Binary-ﬁoatihg: The decimal
floating-point number X has the form X=sddddd.
DDDDDDD * 10F, where leading zeros are not
counted as significant digits. The following are given:
(A) signed decimal string E
(B} signed decimal string I= sdddddDDDDDDD
{C) integer P indicating how many digits of I are to
the right of the decimal point so that X can be
written
X=1*10"P*]0E,
{1) Compute U=STRBIN(I).
(2) Compute W=STRBIN(E).
(3} Compute result X =U*10%-F, &

B R s ca i et ate iy &)

R e AL e A]

R R IR A g A A

ke A G T R ¢

Errata—

“An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic”

The changes to Jerome T. Coonen’s article in the January
1980 issue of Compurer (pp. 68-19) are of two types. Those
marked (E) correct errors, while the others, marked (U), bring
the guide up to date with the most recent draft of the proposal.

(U) Introduction, para. 2, line 2: Replace Draft 5.11 with
Draft 8.0. Also update the footnote ** to refer to the
March 1981 issue of Computer.

(U) §1.1, under Rounding Modes: Delete line (A) and the
tabel **(B)"’ since all rounding modes are required now.

(E) Table 1: In the formula for represented denormalized
numbers the exponent of 2 is incorrect. The correct for-
mula is

(—1)5 x 2E-Bas¥d x (LF) .

U) §).5, paragraph beginning An impiementationof
“That first sentence should be shoriened Lo An implemen-
tation of the standard shall support all four rounding
modes.

| U) §1.12: Readers should note that the implementation

guide uses unnormalized in its traditional sense, that is,
describing any number whose leading significant digit is
0; thus denormalized numbers are simply those unnor-
malized numbers whose exponent is the format’s
minimum. On the other hand, Draft 8.0 restricts the word
wnnormalized to apply only to pumbers whose leading
significant bit is zero but which are not denormalized.
(E) §2.7: The special case test

If either operand is an munnormal zero then proceed as in
¢; otherwise.

should be removed from §e and inserted at the beginning
of §f,h.i. Thus §e begins simply Compute:.

(E) §2.8: The Exceptionclause of §b,c.fshould bechanged to
Exception: [f inb, Y is unnormal zero, proceed as in a.

(E) §2.9:1n§b,creplace unnormal zero by unnormalized. To
§f append Normalize Z. and check for underflow.

(U) £2.14, para. 1: The sentence beginning An implemenia-
tionof. . .should be shortened to Animplementation of
the standard shall support all four rounding modes.

(€) §2.17: Thelast word of clause (1)should be changed from
enabled 1o disabled.

2.16

CHAPTER 3

Numerical Programming Environments

The body of this chapter is an article by W. Kahan and this author as
published in the book *'The Relationship between Numerical Computation and
Programming Languages”, edited by J. K. Reid. It is reprinted here with the

permission of the publisher, North-Holland Publishing Company.

Although the proposed arithmetic standards are intended to specify the
total numerical programming environment, they address only indirectly
many of the language issues that arise in actual implementations. This
chapter is an attempt to defuse some of the conflict between numerical
requirements and existing language standards with an argument for the
“near” independence of numerical (semantic) and language (syntactic)
domains. It is believed that proper partitioning of responsibility for the

design of a programming system will lead to the best implementations.

3.1

The Near Orthogonality of Syntax, Semantics, and
Diagnostics in Numerical Programming Environments

¥W. Kahon and Jerome T. Coonen

Mathemaeatics Department
University of California
Berkeley, California 84720
U.S.A.

We can improve numerical programming by recognizing that three aspects of the
computing environment belong to intellectually separate compartments. One is the
syntax of the language, be it Ada, C, Fortran or Pascal, which gives legitimacy to
various expressions without completely specifying their meaning. Another might be
called “arithmetic semantics™. It concerns the diverse values produced by
different computers for the same expression in & given languege, including the
values delivered after exceptions like over/underflow. The third compartment in-
cludes diagnostic aids, like error flags and messages; these too can be specified in
languege-independent ways. H<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>