EDITOR’S PROFILE of this issue
from a historical perspective ...
with Paul Wesling, SF Bay Area Council GRID editor (2004-2014)

December, 1962 (mid-month):
Cover: shown are the 15 IRE award winners from our Section – more than for any other Section in the IRE. John Moll is elected a Fellow of the IRE; he joined Stanford from Bell Labs. When I was studying semiconductors, we used a preprint of his book, which featured the Ebers-Moll model of the transistor. He went on to Fairchild, then Hewlett Packard, and then received the IEEE’s Edison Medal in 1991.

Page 8: Fred Terman of Stanford (see cover) has won the IRE’s Founders Award, which is given only on special occasions; the citation is for “distinguished leadership in the organization and administration of, and contributions to, scientific research and education.” Only 6 have been given. He chaired the IRE in 1939, headed up the wartime Radio Research Laboratory at Harvard, and developed Stanford’s EE department into the nation’s largest producer of doctoral graduates. He (and Stanford president Wally Sterling) started the Stanford Industrial Park, now with 40 tenants. An article about him is in the December 1962 Readers Digest.

Page 8: The Bio-Medical Electronics chapter lays out the agreements in principle for merging with the AIEE’s similar chapter; the plan is to cooperate now on joint meetings/activities, and complete the integration with election of IEEE officers next summer.
Today at Hughes you will find one of the country's most active space-electronics organizations. Important new and continuing projects, including SURVEYOR, SYNCOM, Missile Defense and POLARIS guidance systems are growing at unprecedented rates.

This vigor promises the qualified engineer or scientist more and bigger opportunities for both professional and personal growth.

Many immediate openings exist. The engineers selected for these positions will be assigned to the following design tasks: the development of high power airborne radar transmitters, the design of which involves use of the most advanced components; the design of low noise radar receivers using parametric amplifiers; solid state masers and other advanced microwave components; radar data processing circuit design, including range and speed trackers, crystal filter circuitry and a variety of display circuits; high efficiency power supplies for airborne and space electronic systems; telemetering and command circuits for space vehicles, timing, control and display circuits for the Hughes COLIDAR (Coherent Light Detection and Ranging).

If you are interested and believe that you can contribute, make your appointment today.
Measure frequency and ratio directly; measure speed, rpm, pressure, temperature, acceleration or any phenomena that can be converted with transducers to ac or pulses.

The same design, circuitry and construction features of all new transistorized & counters are incorporated in this low-priced, general-purpose counter. Time base is derived from the power line, providing 0.1% accuracy—fully adequate for many frequency measurements. The counters have a maximum counting rate of 300 KC. 0.1 v sensitivity permits low-level measurements.

Model 5211A has gate times of 0.1 and 1 second. Model 5211B has an additional gate time of 10 seconds. Otherwise, the instruments are identical. A storage feature, which can be disabled by a rear-panel switch, provides a continuous display, each reading held on the 4-digit neon columnar readout until the count itself changes. The counters provide a 1-2-2-4 BCD code output for systems use or recording devices. Manual gate allows the 5211 counters to be controlled by the front panel, or be operated remotely by contact closure or suitable pulses.

Solid state design and construction provide low power consumption, low heat dissipation, operation over a wide temperature range. The counters are housed in the new & modular cabinet for bench and rack mount. Plug-in circuit modules and ready accessibility simplify maintenance. Both models weigh but 10 lbs. and can easily be carried in one hand. Conservative design features, such as the use of decade dividers in the gate generating circuits, provide operational stability and eliminate calibration problems.

Specifications

Maximum counting rate: 300 KC

Display: 4 digits, neon column

Input sensitivity: 0.1 v rms sine wave

Temperature range: 20 to 50°C

Time base: 50 or 60 cps power line

Manual gate: Controlled by front panel function switch, external contact closure, or by 3 volt peak positive pulses at least 10 μsec wide at half amplitude point.

Frequency measurement: 2 cps to 300 KC; accuracy ± 1 count, ± time base accuracy

Ratio measurement: Read as (f1/f2)

Range: f1; 2 cps to 300 KC (0.1 v rms) for 100 cps to 300 KC (1 v rms into 1000 ohms)

Accuracy: ± 1 count of f1, ± trigger error of f2

Dimensions: 10¼" wide x 3½" high x 11½" deep, 10 lbs

Price: $5211A, $750.00; $5211B, $825.

Data subject to change without notice. Prices f.o.b. factory.

HEWLETT-PACKARD COMPANY

CONTACT OUR ENGINEERING REPRESENTATIVES,
NEELY ENTERPRISES, FOR INFORMATION—Los Angeles, 3929
Los Angeles Bldg., North W'wd., 587-1482 and PO 4-3811,
San Carlo, 501 Laurel St., 591-7661; Sacramento, 1317 Pil-
wood St., Gl 2-8901; San Diego, 1055 Sloaton St., AC 2-8103;
San Diego, 1171 S. Scottsdale Blvd., 543-7401, Tucson, 222 So.
Tucson Blvd., MA 3-2564, Albuquerque, 6501 Lomas Blvd.,
N.E., 255-5586; Los Cruces, 114 S. Water St., 576-2486.
SILICON-STEEL LAMINATIONS
For Audio Transformers
Power Transformers
Rotors and Stators

NICKEL-IRON LAMINATIONS
For High Frequency Transformers
Inductors
Relays

ORDER FROM ARNOLD'S PACIFIC DIVISION
... your only source of **QUALITY** laminations west of the Rockies

Your best bet for *quality* laminations—accurate to size, shape and performance; clean-cut and free from burr—is to specify and use Arnold Pacific products.

Arnold's Pacific Division plant, sales office and warehouse facilities are located right in the heart of the electronics industry on the West Coast. We have the capacity and experience to give you superior service, and you can count on the expert assistance of our entire staff on any problem you may have.

Once your specifications have been accurately determined and checked, your order is quickly produced from our extensive inventories of silicon and nickel-iron alloys. Modern facilities and methods, and careful attention to annealing procedures assure the utmost in magnetic properties and smooth, clean lamination surfaces, free from scale.

Let us serve you. Inquire today about Arnold's complete line of standard laminations and other components for the electrical and electronics industries.

WRITE FOR THE ARNOLD PACIFIC CATALOG
This 64 page booklet contains complete specifications and detailed drawings of all standard Arnold nickel-iron and silicon-steel laminations. Also illustrates line of stamped metal components for electronics.

ADDRESS DEPT. TG-12

THE ARNOLD ENGINEERING COMPANY, Main Office: MARENGO, ILL.

SILICON-STEEL LAMINATIONS

For Audio Transformers
Power Transformers
Rotors and Stators

NICKEL-IRON LAMINATIONS
For High Frequency Transformers
Inductors
Relays

ORDER FROM ARNOLD'S PACIFIC DIVISION
... your only source of **QUALITY** laminations west of the Rockies

Your best bet for *quality* laminations—accurate to size, shape and performance; clean-cut and free from burr—is to specify and use Arnold Pacific products.

Arnold's Pacific Division plant, sales office and warehouse facilities are located right in the heart of the electronics industry on the West Coast. We have the capacity and experience to give you superior service, and you can count on the expert assistance of our entire staff on any problem you may have.

Once your specifications have been accurately determined and checked, your order is quickly produced from our extensive inventories of silicon and nickel-iron alloys. Modern facilities and methods, and careful attention to annealing procedures assure the utmost in magnetic properties and smooth, clean lamination surfaces, free from scale.

Let us serve you. Inquire today about Arnold’s complete line of standard laminations and other components for the electrical and electronics industries.

WRITE FOR THE ARNOLD PACIFIC CATALOG
This 64 page booklet contains complete specifications and detailed drawings of all standard Arnold nickel-iron and silicon-steel laminations. Also illustrates line of stamped metal components for electronics.

ADDRESS DEPT. TG-12
What's a tube?

Believe it or not, this question is often asked today. It's the old saw, "out of sight, out of mind."

The fabulous semi-conductor is the reason for such forgetfulness, since it plays such an important role in today's emphasis on exotic systems for missiles and electronic devices.

However, let's not forget the reliable, dependable, workhorse—the VACUUM TUBE.

Klystrons, Magnetrons, Thyatrons, Ignitrons, Phototubes, Nuvisors... they are called by many names, but remember they're tubes and still have a big place in industry.

We at BRILL ELECTRONICS know what tubes are, and have a warehouse fully stocked to prove it! We are ready to give immediate delivery on such name brands as, Amperex, Eimac, General Electric, Raytheon-Machlett, Mullard, National Electronic, National Union, RCA, Sylvania, United Electronics, and many others.

The next time you need tubes, think of BRILL. We have semi-conductors, too!

Be a BRILL-iant Buyer!

BRILL ELECTRONICS
610 E. 10th Street • Oakland 6, California
Phone No. 834-5888
MEETING CALENDAR

SAN FRANCISCO SECTION
(Joint meeting with PGCS and AIEE)
"Oblique Ionosphere Soundings and Radio Propagation"
Speaker: Raymond D. Egan, manager, advanced communications, Granger Associates
Place: Auditorium, Crown Zellerbach Bldg., Market and Sansome, San Francisco
Dinner: 6:00 P.M., Mirror Room, 2nd Floor, Veneto Restaurant, Mason and Bay, San Francisco
Reservations: Mrs. Doris Gould, DA 1-1332
(Parking available at restaurant and Zellerbach Bldg.)

PROFESSIONAL GROUPS
Antennas & Propagation
(Joint meeting with San Francisco Section, IRE and AIEE; see above)
"Space Research Program from the Point of View of Education"
Speaker: Professor Samuel Silver, University of California, Berkeley
Place: University of California
Dinner: Faculty Club; University of California Campus: time to be announced
Reservations: To be announced

Audio
"Noise in Recording Systems"
Speaker: Bob V. Markevitch, research division, Ampex Corporation
Place: Stanford Research Institute, Conference Room B
Dinner: 6:30 P.M., Atherton Club, 3391 El Camino Real, Atherton
Reservations: Herb Ragle, EM 9-7111, Ext. 821

Communications Systems
(Joint meeting with San Francisco Section, IRE and AIEE; see above)
"Thermo-magnetic Cooling"
Speaker: Dr. Kermit F. Cuff, research scientist, Lockheed Research Labs
Place: Physics Lecture Hall, Room 100, Stanford University
Dinner: 6:30 P.M., Red Shack, 4085 El Camino Way, Palo Alto
Reservations: None required

SAN FRANCISCO SECTION OF AIEE
Communications Division
(Joint meeting with San Francisco Section, IRE and PGCS, see above)

WESCO NEWS
1963 PAPERS CALL
A call for papers for the technical program of the 1963 Western Electronic Show and Convention has been issued by the committee headed by Dr. Jerre D. Noe, director of the Engineering Sciences Division of Stanford Research Institute.
Dr. Noe has announced April 15 as the closing date for submissions. To be furnished are three copies each of abstracts running 100 to 200 words, and summaries of from 500 to 1000 words indicating related work and new contributions. Advance clearances should be made where needed.

Submissions should note an IRE professional group classification as an indicator of the technical field into which the subject falls.
Dr. Noe has also reported that no convention record of the 1963 WESCO technical program will be published.
Vice chairman of the technical program committee is Dr. John G. Linnell, professor of electrical engineering at Stanford University.
Authors should submit abstracts and summaries as follows: Dr. Jerre D. Noe, WESCO Technical Program Chairman, Suite 2210, 701 Welch Road, Palo Alto, California.
plans for the 1963 wesc on being well under way, as you will read in other articles in this issue of grid, a final review of the 1962 event is in order.

total registration for this year’s event (46,152) was almost 6000 more than in any previous year, and well ahead of even the most optimistic predictions, largely attributed to the excellent publicity program, including the special issues of grid-bulletin and heavy coverage in metropolitan Los Angeles newspapers.

Almost 6000 of those attending were in management capacities, and 18,677 were in various engineering positions. For those exhibitors displaying production devices, almost 3300 attendees were primarily interested in this field.

More than 85 percent of the entire registration came from the eleven Western states making up the seventh region of IRE, while 65 percent of the exhibitors came from states other than these eleven, showing the strong national interest in displaying products and developments to the Western electronics industry.

In the important field of technical papers, the preprint experiment, with two successful years behind it, has proved to be worthwhile, and will undoubtedly be continued. Copies of either 1961 or 1962 papers may be obtained by writing directly to Western Periodicals Co., 1300 Raymer Street, North Hollywood, Calif. This firm has also printed a permuted index to all WESCOn papers available for the period 1957 through 1962.

A total of 31 students participated in the 1962 Future Engineers Show and Symposium. Extremely rewarding letters have been received by the committee from these students, expressing their very successful experiences with the entire week of activities. Five students shared in the $2800 scholarship funds offered the entrants.

for the first time, WESCOn made awards for outstanding company displays, in a program to raise the standards for exhibits and to encourage companies to consider the various phases which make an exhibit more beneficial to visitors, as well as the company. Winners of awards were: Collins Radio Co.; Omni Spectra, Inc.; Tektronix, Inc.; Sylvania Electric; and Consolidated Electrodynamics Corp.

More than 850 companies exhibited in 1230 booths, to make this the largest exhibit of electronic products ever presented, slightly larger than the IRE Show from the standpoint of exhibit space, and unquestionably the largest trade show of any kind ever held in a city west of Chicago. The unanimous opinion of exhibitors, based on a survey conducted by the exhibits committee, made up of representatives of exhibiting companies, was that the 1962 WESCOn was the greatest in which they had ever participated, anywhere, from considerations of traffic flow, the inquiry card system, and the highly debated question of show hours. Opinion still seems to be equally divided regarding evening hours of exhibit.

A survey in depth regarding the technical sessions has been carried out for WESCOn by Facts Consolidated and will be reported on in an early issue of grid, as will be detailed plans for the 1963 event at the Cow Palace, August 20-23, as they further develop.

Meyer Leifer
section-wesc on director

1963 CHAIRMEN NAMED

Committee chairman and vice chairman for the 1963 WESCOn have been announced by John C. Chartz, Dalmo Victor Co., show director, and Meyer Leifer, Ampex Instrumentation Products Co., convention director. Section members wishing to serve on committees are requested to write or call the WESCOn office, 701 Welch Road, Suite 2210, Palo Alto, DA 1-1332, indicating the committee of their choice.

Banquet chairman and vice chairman are Cort Van Rensselaer, Hewlett-Packard Co., and William A. Melchior, Eichorn & Melchior, Inc.

Cocktail party chairman and vice chairman are Phillip L. Gundy, Technical Systems, Inc., and George Ewing, Lenkurt Electric Co.

Distributor-rep conference chairman and vice chairman are Elvin W. Feige, Elmar Electronics, and Charles N. Meyer, Meyer & Ross.

Exhibits chairman and vice chairman are Berkley J. Baker, Litton Industries, and Harry J. Lewenstein, Hewlett-Packard Co.

Facilities chairman and vice chairman are William W. Wilson, Neely Enterprises, and Henry Schroeder, Melabs.

Future Engineers Show chairman and vice chairman are Alan T. Waterman, Jr., Stanford University, and Charles H. Merritt, Ampex Corp.

Hospitality cochairmen are Donald B. Harris, Stanford Research Institute, and Albert J. Morris, Radiation at Stanford.

Industrial design chairman and vice chairman are Fred Hill, Lenkurt Electric Co., and Hugh Kennedy, Granger Associates.

Public relations chairman and vice chairman are Charles Elkind, IBM Corp., and Thomas D. Boyd, Stanford Research Institute.

(Continued on page 10)
awards and fellows

TERMAN, OTHERS HONORED

The man largely responsible for making the San Francisco Bay Area a leading international center of electronics research and industry will be awarded one of the two highest honors conferred by the IRE.

Dr. Frederick E. Terman, vice president and provost of Stanford University, will receive the IRE Founders Award at a banquet on March 27, 1963, at the Waldorf-Astoria Hotel in New York City.

The presentation will be one of the highlights of the first national meeting of the Institute of Electrical and Electronics Engineers.

Given only on special occasions for outstanding contributions to the profession, the Founders Award will be presented to Dr. Terman for "distinguished leadership in the organization and administration of, and contributions to, scientific research and education." Six others, including Dr. David Sarnoff of the Radio Corporation of America, have received the award since it was established ten years ago.

Dr. Terman was chairman of the San Francisco Section of IRE in 1939. After World War II he was one of the first to recognize the importance of educational institutions in the economic development of electronics. Largely through his efforts during and after his tenure as dean of Stanford's School of Engineering, the university has become the nation's largest producer of doctoral graduates in electronics.

His ideas are further reflected in the 400-acre Stanford Industrial Park, whose 40 tenants include some of the nation's leading electronics firms. He is featured in the current issue (December, 1962) of "Reader's Digest" in an article describing the San Francisco Bay Area's electronics development.

Dr. Terman is a fellow and a past president of the IRE and was the recipient of its other top award, the Medal of Honor, in 1950. He was decorated by the British government in 1946, and in 1948 received the highest U.S. civilian honor, the Medal for Merit, for his wartime work as head of the Radio Research Laboratory at Harvard.

meeting ahead

NOISE IN THE SYSTEMS

General recording system noise, with particular emphasis on magnetic tape, photographic, and electron beam recording systems, will be discussed at the December meeting of PGA by Bob V. Markovitch, research division, Ampex Corp.

Additive and multiplicative noises will be discussed and applied to the several systems. A concept used in photography will be introduced, expressing the capacity of a system to store information in the presence of multiplicative noise by measuring the number of distinguishable levels within the dynamic range of the film. A technique readily extended to electronic equipment and memory devices.

Bob Markovitch joined the applied research section of the Ampex research department in 1961. He specializes in theoretical analysis and the sensitometry of electron beam recording materials.

The speaker has been associated with studies on magnetic and nonmagnetic rapid access storage systems, video recording equipment for medical fluoroscopy, and related inquiries. He received the B.S.E.E. from UC, Berkeley, in 1954 and the M.S.E.E. in 1956.

consolidation notes

THE URGE TO MERGE

The first meeting of the merger committees of the San Francisco Sections of AIEE and IRE was held November 20 at the Engineers Club, San Francisco, under the cochairmanship of Robert E. Grady, AIEE, and Stanley F. Kaisel, IRE.

Attending were members of the AIEE merger committee, J. E. Barkle, J. C. Beckett, and Robert H. Miller; members of the IRE merger committee, Albert J. Morris and Peter Sherill; and Victor E. Kaste, chairman, SFS, AIEE.

Five tentative agreements in principle were arrived at:

1. A target date of July 1, 1963, for complete merger of all activities was set within the limits that financial considerations dictate.

2. An IEEE slate of officers will be proposed to the respective memberships for election to office starting July 1, 1963.

3. Whenever possible, activities which are common in function will be encouraged in order to work together informally, immediately, and to allow members to become familiar with each other's scope of activity, as the basis for a plan for the merging of each activity.

4. Most difficult problems of the merger (finances, publications) will be given maximum time for solution in order not to force an artificial decision, but this should not prevent early action in areas where common activity poses no difficulties.

5. Administering the evolved merger plan being the responsibility of new officers to be elected in May, accomplished but unsatisfactory solutions to problem areas should not be rushed into by the merger committee.

These principles of consolidation are tentative and subject to further consideration at subsequent meetings. Final detailed plans for consolidation must be reviewed and approved by the respective executive committees of AIEE and IRE.

Thirteen specific areas were covered at the first meeting and will be reviewed in detail in early issues of Grid.
meeting review

THE HAND

PGAC held its first meeting of the season in October at Stanford University. The speaker was Dr. Hans Ernst of the control system research department of IBM, San Jose, whose subject was a computer-controlled hand.

The servo-manipulated hand built by Dr. Ernst was an attempt to allow a digital computer to come into direct contact with the physical world, to sense its environment, and to react to this environment in trying to achieve certain specified goals.

The hand was allowed to perceive its environment by giving it a sense of touch consisting of several pressure-sensitive transducers mounted in many locations over the surface of the hand.

The hand was allowed to react to its environment by means of seven servo motors.

Although much time and energy was spent in perfecting the sense-of-touch transducers, only very inexpensive, low-quality motors and feedback potentiometers were used for movement. Instead of depending upon accuracy of positioning, the hand was forced to rely on its senses to determine its location, much as is done by humans.

If standard, deterministic programming had been used to program the digital computer to move the hand, the system would not have been very different from an automated machine tool. Little use would have been made of the hand's senses, and the system would hardly be "reacting" to the world at all. Rather, a heuristic type of programming was used where the course of action at any point was determined by the results of previous steps. If, in performing an assigned task, the hand encountered a situation that it did not expect, it was told to search back through its program for a similar situation and to act as it had previously. In this way the hand was given the ability to react "intelligently" to a changing environment.

The speaker presented a film showing the hand in action. It built a tower of blocks by sensing the positions of several blocks and then placing them on top of one another. In another task, it was told to place blocks in a box. After finding the box, it searched... (Continued on page 10)

COMPLETE NORTHERN CALIFORNIA COVERAGE FROM MOXON....

A modern manufacturer's representative is no longer a happy-go-lucky fellow with a battered briefcase... It takes a large, technically competent field staff plus complete service, sales, and advertising backup to give you the coverage you need... Moxon Electronics, an organization of over 30 people, is this type of representative... Call your Moxon Man often.

MEET THE SAN MATEO STAFF

Dave Peters
Regional Manager
Dave is one of the oldest (in experience) Moxon Men, having joined the firm in 1957 B.Sp. (Before Sputnik). Before coming north to head up the San Mateo office, he was one of the top Moxon Sales Engineers covering the San Fernando Valley and Southern Coast which included the important Pacific Missile Range and Vandenberg Air Force Base.

Gene Ward
Sales Engineer
Gene recently joined the Moxon organization after four years at MELABS where he was branch engineering manager. He has had extensive experience in microwave instruments and systems, and holds an EE degree from the University of California.

Gary Schmidt
Service and Inside Technical
A welcome addition to the San Mateo office is Gary, who joins Moxon after four years with Neely Enterprises in customer and field service. In addition to acting as application engineer Gary will also set up a local service department.

Vivian Stikes
Office
Vivian has been with Moxon Electronics since 1955 and knows the products backwards and forwards... so for accurate prices, delivery dates, and fast follow-up information, ask for Viv.

PLUS IMPORTANT SALES, SERVICE, AND ADVERTISING BACKUP

Our first office was located in the basement of Mox's San Mateo home in 1951, and Mox still spends a good portion of his time calling on Bay Area customers... Another frequent visitor is Larry Courtney, who is responsible for the company's advertising and promotional activities... our Service Manager, Darrell Tomlinson, is "on call" at all times to assist our new Northern California service man in the shop, in the field, or in the training of customers... That's why we say, "You get complete coverage from Moxon Electronics."

moxon electronics corp.
15 41st Avenue, San Mateo, California
Fireside 5-7961
SERVING NORTHERN CALIFORNIA FOR OVER 10 YEARS

REPRESENTING
ALFRED, ATI, ASTRODATA, CLAIREX, CMC, J-OMEGA, MARCONI, RUTHERFORD, SYSTEMS RESEARCH, TALLY, TRYGON, AND VIDAR.

december 13, 1962
meeting review

REMARKABLE THINKING MACHINE

Sixty members of the East Bay Subsection, their wives, and friends met at the Pleasanton Hotel in Pleasanton, November 19, for a very informative evening.

John Lavrischeff, chairman, started the speaker's portion of the evening by announcing the EBSS sponsorship of "Junior Scientists and Engineers of the East Bay." This will be a project for seniors of the various high schools, with awards for the best project or paper presented.

Cliff Proffit introduced Hyman Olken, who spoke on "The Human Nervous System as a Thinking Machine." Mr. Olken is an electronics engineer at LRL Livermore, whose hobby, since 1950, has been the study of the human nervous system. He outlined the main features of the nervous system anatomy and explained a theory he has evolved on how these features accomplish mental functions. Significance of theories of brain function for new developments in communication engineering, such as random networks and neuristors, was pointed out.

Mr. Olken showed slides of an engineer's view of anatomy, illustrating trunk lines from various control zones to the brain. The building blocks for these trunk lines are the individual...

MORE WESCON

Registration chairman and vice chairman are Fred J. MacKenzie, Stanford Research Institute, and Thomas A. Christiansen, Hewlett-Packard Co.

Technical program chairman and vice chairman are Jerre D. Noe, Stanford Research Institute, and John G. Linvill, Stanford University.

Technical tours chairman and vice chairman are Robert E. Miller, Stanford University, and John W. Summers, Varian Associates.

Visitors services chairman and vice chairman are Norman Hiestand, Varian Associates, and William C. Weber, Jr., Comap Corp.

Women's activities chairman and vice chairman are Mrs. William P. Doolittle and Mrs. Stanley F. Keisel.

Only women may volunteer for the last committee named, according to Director Leifer. All letters from those wishing to serve should be addressed to the WESCON-IRE office.

nerve cells, and each nerve cell is composed of many axons. These building blocks are of three types: transmitter, relay, and effector.

The speaker pointed out how these are organized in the body. Some respond to temperature, some to pressure. Responses of these cells are in the millisecond range.

We can achieve a model of the functional organization of the nervous system that adheres closely to the system's known anatomical structure if we postulate these basic concepts:

First, that transmission channels in the brain are not specific and fixed, but are formed by the repetitive input of sensory signals over two-way transmission channels between the brain's central exchange—the thalamus—and various regions of the cortex.

Second, that the continuous inflow of sensory input penetrates farther and farther into the mass of the cortex by a zigzag path produced by bouncing of the input back and forth between cortical layers. In this way a sensory input can be stored at any point in the cortical mass, and a succeeding, similar input can search the entire mass until it happens upon, and thus "recalls," the originally stored engram.

(Continued on page 12)

MORE REVIEW

for the blocks and started placing them as directed. When the box was moved, it merely searched for the box again and continued. Several other very interesting examples of changing environment were demonstrated.

Dr. Ernst concluded his talk by noting several possible applications of his work. Perhaps the most intriguing of these was the use of the heuristic approach to the programming of automatic explorers of the moon. Unexpected events and communication delays that would otherwise ruin a mission might be handled with ease.

A. S. McAllister
Ceramics to infinity

Wesgo capability can provide an endless number of shapes and forms in quality high alumina ceramics for your most demanding applications.

Dense, vacuum-tight Wesgo alumina ceramics, with up to 99.5% Al₂O₃, are strong, hard and abrasion resistant. They offer high thermal conductivity, exceptional chemical inertness and superior electrical properties at microwave frequencies—even at high temperatures.

Wesgo ceramics are available in sizes and shapes to meet your individual specifications. Manufacturing is to tight dimensional tolerances; parts are of uniform density, free from internal and surface defects. All are quality controlled to meet unparalleled performance standards.

Write today for a brochure describing these premium ceramics or Wesgo's precious metal brazing alloys.

WESGO – Where Quality is the Chief Consideration

WESTERN GOLD & PLATINUM COMPANY
Dept. G-12, 525 Harbor Blvd., Belmont, California
LYtell 3-3121 Area Code 415
MORE REVIEW

Third, that the supersededness of one thought by another (decision) is effect
by a joint action of the nerve cells and the blood channels between them, whereby the mass of nerve cells in which one idea is stored progressively absorbs some of the cells from the area in which the other idea is stored, until the expending nerve area of the predominant idea obliterates the nerve area of the idea that is suppressed.

This is the grand scheme or gross pattern of organization of the human nervous system as a thinking mechanism which one can surmise on the basis of its anatomy. It is only a gross picture and one that will be clarified by the detailed analysis of its major parts, which follows. But even this gross picture provided the following further insight into how the brain functions as a thinking mechanism.

The cortex is formed by intermixed concentrations of efferents, interlayer neurons, and granular cells. Hence, on the basis of the above picture, the constant massive sensory input flow to the cortex will divide into these three main output streams:

1. Those inputs which go directly to efferents. These will form an output stream only slightly delayed behind the input flow. As it reaches back down through the subcortical centers, it will form a feedback which reacts with the inputs that are causing present bodily actions, to effect a graded, smooth regulation of those actions. A practical example of this would be the smooth, continuous adjustment of the hand holding the tennis racket as one watches the ball coming over the net in a game of tennis.

2. Another main output stream would be formed by the inputs which bounced back and forth between
layers. This stream would excite many memory traces and thus produce the memory-modulated inputs which cause such mental actions as pattern recognition.

3. A third portion of the massive input stream would excite the large granular cell masses and thus cause some cell domains to absorb others and thereby produce that outflow of new ideas which underlies all judgment and creative thought.

Naturally each of these actions will take place predominantly in the area best suited for it; that is, direct feedback will take place in the area that has high concentration of transmission cells relative to granular cells, which occurs in motor cortex.

Secondly, extensive bouncing back and forth between layers, thus causing memory recall and therefore recognition, will occur in well-layered areas, such as visual and auditory cortical areas.

Finally, conception of new ideas will occur in the area where there is a relatively large portion of granular cells and comparatively small concentration of transmission neurons. This occurs in the frontal area; hence that is where what we call "interpretive" or projection mental function is concentrated. These functionally determined structural differences between major cortical areas are strikingly evident when they are seen side by side.

N. K. LITTLE

events of interest

NEED A "SPECIAL"?

Hammarlund capabilities for producing special capacitors are second to none—extensive engineering and manufacturing facilities are dedicated to the design and production of unique capacitors for government and industry to meet the most critical specifications and unusual applications.

For variable capacitors—special or standard—specify Hammarlund—backed by more than half a century of successful design and manufacturing experience.

For complete details, call or write:

R. W. THOMPSON ASSOC., INC.
4135 El Camino Way, Palo Alto, California
Davenport 1-6383

NEW OFFICERS ELECTED

One of the West's pioneer electronics executives, Emmet G. Cameron, has been elected president of WEMA. He was among the founders 20 years ago and has been an active industrial and civic leader.

Elected vice presidents were Burgess Dempster, president, Electronic Engineering Co. of California, Santa Ana; William H. Hefflin, general manager, Beckman & Whitley, Inc., San Carlos; Orison Wade, assistant chief engineer, General Dynamics/Astronautics, San Diego; Philip E. Renshaw, chairman of the board, Tally Register Corp., Seattle; and Virden E. Scranton, assistant general manager, Motorola Semiconductor Products Division, Phoenix.

Kenneth T. Larkin, associate director of electronics research, Lockheed Missiles & Space Co., Palo Alto, was elected secretary, and Robert M. Ward, vice president, Beckman Instruments Inc., Fullerton, has been named treasurer.

E. E. Ferrey, formerly executive director of WEMA, was elected executive vice president.

GRID SWINGS

IT IS REPORTED:

E. E. (Jack) Shannahan has joined Sylvania Electronic Systems, Mountain View, as EDL personnel manager after serving with Lenkurt Electric Co. as manager of employment and training since 1956.

W. M. Hawkins, Jr., has been named sales manager of the Electronic Engineering Co., Santa Ana, responsible for all field sales activities, including supervision of EECO sales rep organizations throughout the United States, Canada, Western Europe, and Japan.

ENGINEERS
...exclusively
RESULTS
...outstanding

We serve but one field: engineering. By specializing, we can keep abreast of contract awards, opportunities and salaries.

No wonder engineers and engineering firms alike have made FORUM one of their prime sources for personnel or positions. Complete "job campaigns"; resume preparation and referrals, inquiry letters, interviews.

For prompt, confidential service, come in, call or write:

FORUM
PERSONNEL AGENCY
378 Cambridge
Palo Alto
California
321-6382

SRI
TECHNICAL ADMINISTRATOR

Engineers experienced in technical administration of R & D projects are invited to inquire about administrative opportunities in our Communications Research Laboratory.

This position involves major administrative responsibility within a group whose projects are performed in several field locations throughout the world.

For further information, please call:
DA 6-6200, Ext. 3440

STANFORD RESEARCH INSTITUTE
An equal opportunity employer

we don't need engineers right now... but think about us

We’re a small, energetic, and congenial company where the growth is rapid but planned and controlled for the long range. We specialize in the design and manufacture of proprietary electronic instrumentation for control and data systems. Our management represents the best in training and experience.

WE NEED DESIGN ENGINEERS for solid-state circuit design to work on special analog and digital data instrumentation. Each assignment is carried through from preliminary design to production.

IN PRODUCT DEVELOPMENT we need creative men for continued R & D to expand our product line.

Salary, benefits, and participation commensurate

Write a letter or send a résumé to

VIDAR CORPORATION
2296 Mora Drive, Mountain View, California
An equal opportunity employer

Richard D. Hanson, president of Zeltex, Inc., Concord, has announced establishment of engineering and manufacturing facilities for solid-state instrumentation specializing in development and manufacturing of high-reliability solid-state operational amplifiers and automatic checkout systems. Development of amplifier product lines is now completed, and production facilities are being readied at the new plant.

Electronic Engineers and Scientists
Drop in for a free ABACUS and learn about the opportunities for career advancement with our many client firms on both the West and East Coast.
(Companies pay the fee, of course)

PROFESSIONAL AND TECHNICAL
RECRUITING ASSOCIATES
(A division of the Permanent Employment Agency)
825 San Antonio Road, Palo Alto, California, DA 6-0744

WARREN ENNIS announces the opening of
Beau Brummell
Party Occasion Catering for Parties Anywhere
COMPLETE DINNERS or BUFFETS
Receptions, Cocktail Parties, Executive Functions
Consultation without Obligation
CALL 967-6981
2249 Grant Road, Los Altos
MANUFACTURER/REPRESENTATIVE INDEX

Accurate Instrument Co. ... Jay E. Stone & Assoc.
Adcom Corporation .. W. K. Geltis Company
Ad-Yu Electronics Labs, Inc Peninsular Associates
Aircom, Inc. .. Adcom Associates
Antenna Systems, Inc ... Richard A. Strasser Co.
Anlabs, Inc ... Jay E. Stone & Assoc.
Applied Technology, Inc .. Mason Electronics
Associated Testing Laboratories, Inc Mason Electronics
Astrodata, Inc .. Mason Electronics
Astron (Skille Electronics) Corp Long & Assoc., Inc.
Avnet Instrument Corp .. W. K. Geist Co.

Ballantine Labs, Inc ... Carl A. Stone Assoc., Inc.
Barnes Engineering Company Costco & Co.
Baxter Electric Company ... Tom G. Maier Company
Bausch & Lomb, Inc .. Perlmuth Electronics
Bay State Electronics Corp V. T. Rupp Co.
Beckman/Berkeley Division ... T. Louis Smitzer Co.
Behlman/Imar Electronics Corp W. K. Geist Co.
Boonshaft & Fuchs, Inc .. W. K. Geist Co.
Boonton Electronics Corp .. O’Halloran Associates
Boonton Radio Corp .. Nealy Enterprises
Bur-Brown Research Corp W. K. Geist Co.

California Technical Industries Permuth Electronics
Cascade Research .. Mason Electronics
Caswell Electronics Corp R. W. Thompson Assoc.
Chalco Engineering Corp .. Walter Associates
Commo Corporation .. Ault Associates
CircuitDyna Corp .. T. Louis Smitzer Co.
Clairox Corp .. Mason Electronics
Clay Arithmetic Centers ... American Wireless
Components Engineering & Mfg. Co Premmco
Computer Instruments Corp Components Sales Calif.
Computer Measurements Co Components Sales Calif.
Consolidated Ceramics & Metalizing Artwel Electric, Inc.
Continental Connector Co J. Logan & Assoc.
Continental Soldering ... Birnbaum Sales Co., Inc.
Continental-Wirt Electronics Corporation Tom G. Maier Company
Control Logic, Inc. ... J. Logan & Assoc.
Control Switch Div., Controls Co. of America Ballico
Coopertronics, Inc .. T. Louis Smitzer Co.
CTS Corp .. J. Logan & Assoc.

Dgs Div, Thompson Ramo Wooldridge Nealy Enterprises
Dale Electronics ... James S. Heathon Co.
Datamatic Corporation ... Mason Electronics
Datapulse, Inc ... O’Halloran Associates
Dielectric Products .. O’Halloran Associates
Dinamicorp ... O’Halloran Associates
Digital Devices ... Mason Electronics
Digital Equipment Company Penninsula Associates
Digiltronics Corp .. Components Sales Calif.

Dancan Electronics, Inc .. Birnbaum Sales Co., Inc.
Dymec, Division of Hewlett-Packard Nealy Enterprises
Dynantron Electronics Corp G. H. Vaughan

Eastern Air Devices ... James S. Heathon Co.
ERI Research Laboratories, Inc V. T. Rupp Co.
Elco Corporation ... James S. Heathon Co.
Elcor, Inc .. T. Whyckell Company
Eldeco Corporation .. James S. Heathon Co.
Electric Manufacturing Co Birnbaum Sales, Inc.
Electro Assemblies, Inc Birnbaum Sales, Inc.
Electro Cords Company ... Tom G. Maier Company
Electronic Measurements Co O’Halloran Associates
Electronic Modules Corp .. Walter Associates
Electronic Production & Development, Inc Ballico
Elgin-Advance .. James S. Heathon Co.
Emcor, Ingersoll Products Div T. Louis Smitzer Co.
Empire Devices, Inc ... Carl A. Stone Assoc., Inc.
Epplay Laboratory, Inc ... W. K. Geist Co.

Etchomatic, Inc ... James S. Heathon Co.
Fabri-Tek, Inc .. Costco & Co.
Fairchild/Dumont Labs .. R. W. Thompson Associates
Ferranti Power Supply Company Pennsylvania Associates
FIL-Shield Div, of Filtron, Inc Carl A. Stone Assoc., Inc.
Filters, Inc .. Compaq San Francisco
Flow Corporation ... G. H. Vaughan Co.
Fiske Mfg. Co, John ... McCarthy Associates
Forbes & Wagner, Inc .. James S. Heathon Co.
Franklin Systems, Inc .. Carl A. Stone Assoc., Inc.

General Instrument, Capacitor Div J. Logan & Assoc.
General Meters, Inc .. Long & Assoc., Inc.
Gennistron, Inc ... James S. Heathon Co.
Globe Industries .. Long & Assoc., Inc.
Gruenberge Electric Company Pennsylvania Associates

Hammarlund Manufacturing Co R. W. Thompson Assoc.
Hammar Electronics ... McCarthy Associates
Harrison Labs, Div, H-P .. Nealy Enterprises
Heli- Coil Corp .. Premmco
Heaton, Howard .. Birnbaum Sales Co., Inc.
Hewlett-Packard Co .. Nealy Enterprises
HJW Wires .. James S. Heathon Co.
Holt Instruments Laboratories W. K. Geltis Co.
Hudson Tool & Die Co .. John E. Striker Co.
Hughes Aircraft Co, Instruments Walter Associates
Hughes Vacuum Tube Products Division Ballico

IMC Magnetics Corp .. Richard A. Strasser Co.
Industrial Instruments, Inc G. H. Vaughan
Inland Motor Corp ... Costello & Co.
International Resistance Co J. Logan & Assoc.

Jerrad Electronics Corp .. Instruments for Measurements
J-Omeg A Company ... Mason Electronics
J-V-M Microwave .. James S. Heathon Co.

Representative Directory

American Wireless
22 Devonshire Blvd, San Carlos; 591-6260

Artwel Electric, Inc
1485 Bayshore Blvd, San Francisco; JU 6-4074

Ault Associates
120 Santa Margarita, Menlo Park; DA 6-1760

Balsco
Box 907, Palo Alto; DA 1-8501

Birnbaum Sales Company, Inc
626 Jefferson Ave., Redwood City; EM 8-7757

Cain & Company
175 So. San Antonio Road, Los Altos; 968-0995

Comar San Francisco
120 Santa Margarita, Menlo Park; DA 6-1760

Components Sales California, Inc
Palo Alto; DA 6-5317

Costello & Company
535 Middlefield Road, Palo Alto; DA 1-3745

Dynamic Associates
1011-D Industrial Way, Burlingame; 344-1246

Geist Co., W. K.
Box 643, Cupertino, Calif.; YO 8-1508, AL 3-5433

Heaton Co., James S.
413 Lathrop St., Redwood City; EM 9 4671

Instruments for Measurements
251 So. Murphy Ave., Sunnyvale; RE 6-8880

Logan & Associates, Jack
801 Mahler Road, Burlingame; OX 7-6100

Long & Associates, Inc
505 Middlefield, Redwood City; EM 9-3324

Maier Co., Tom G
Suite 717, 375 S. Mayfair Ave., Daly City; PL 5-5566

McCarthy Associates
1011-E Industrial Way, Burlingame; 342-8901

McDonald Associates
716 Wilshire Blvd, Santa Monica; 394-6610

December 13, 1962
MANUFACTURER/REPRESENTATIVE INDEX

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Manufacturer/Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keithley Instruments</td>
<td>T. Louis Snitzer Co.</td>
</tr>
<tr>
<td>Kapco, Inc.</td>
<td>Palo Alto: DA 1-5064</td>
</tr>
<tr>
<td>Kulka Electric Corp.</td>
<td>V. T. Rupp Co.</td>
</tr>
<tr>
<td>Levole Laboratories, Inc.</td>
<td>Richard A. Strassner Co.</td>
</tr>
<tr>
<td>Magnetic Metals, Inc.</td>
<td>Neely Enterprises</td>
</tr>
<tr>
<td>Mercori Instruments</td>
<td>W. K. Geist Co.</td>
</tr>
<tr>
<td>McLean Engineering Labs</td>
<td>Richard A. Strassner Co.</td>
</tr>
<tr>
<td>McMillian Laboratory, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Melabs</td>
<td>W. K. Geist Co.</td>
</tr>
<tr>
<td>Miciel Electronics Corp.</td>
<td>James S. Heaton Co.</td>
</tr>
<tr>
<td>Merrimac Research & Development</td>
<td>T. Louis Snitzer Co.</td>
</tr>
<tr>
<td>Methodo Electronics Co.</td>
<td>John E. Striker Co.</td>
</tr>
<tr>
<td>Metron Instrument Co.</td>
<td>Pennmic Electronics</td>
</tr>
<tr>
<td>Microdot, Inc.</td>
<td>Richard A. Strassner Co.</td>
</tr>
<tr>
<td>Micro-Power, Inc.</td>
<td>T. Louis Snitzer Co.</td>
</tr>
<tr>
<td>Mid-Tel Corp.</td>
<td>W. K. Geist Co.</td>
</tr>
<tr>
<td>Microtron Company Inc.</td>
<td>Richard A. Strassner Co.</td>
</tr>
<tr>
<td>Microwave Associates</td>
<td>Jay E. Stone & Assoc.</td>
</tr>
<tr>
<td>Microwave Electronics Corp.</td>
<td>W. K. Geist Co.</td>
</tr>
<tr>
<td>Microwave Technology, Inc.</td>
<td>Tom G. Maier Company</td>
</tr>
<tr>
<td>Mid Eastern Electronics, Inc.</td>
<td>Tom G. Maier Company</td>
</tr>
<tr>
<td>Millimeter Corp.</td>
<td>D. H. Geist Co.</td>
</tr>
<tr>
<td>Molecular Dielectrics</td>
<td>J. A. Neely Co.</td>
</tr>
<tr>
<td>Molaxis Products Co.</td>
<td>W. K. Geist Co.</td>
</tr>
<tr>
<td>Molex Company, F. L.</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>Motorola, Inc.</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>Narda Microwave Corp.</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>Naff Instrument Company</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>National Resonics, Inc.</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>N.J.E Corporation</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>North Hills Electronics, Inc.</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>Omni Spectra, Inc.</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>Optimised Devices</td>
<td>Alcan Associates</td>
</tr>
<tr>
<td>Panoramic Electronics, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Pastless Electrical Products</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Philco (Microwave Div.)</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Philips Control Relays</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Physical Research Laboratories,</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Plastic Capacitors, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Plastic Stamping, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Plasticoid Corporation</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Polard Electronics</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Potter and Brumfield</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Precision Mechanisms Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Protoscope Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Quan-Tech Labs</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Radiation at Stanford</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Radiation Instr. Devel. Labs., Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Rapid Electric Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Raytheon - Distributor Products</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Raytheon (Industrial Division)</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Reeves Soundcraft</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Remeco, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Renco Engineering, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>RixSon Electronics, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>RHC Electronics Laboratory</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Rohde & Schwarz Sales Co.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Rownan Controller Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Rutherford Electronics Co.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sanborn Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sangamo Electronics Div.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Scott, Inc., H. H.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Selectro Corporation</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sensitive Research Instrument</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Shielding Division, Shieldtron, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sierra Electronic Div. of the PhiCo Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Solid State Products, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Somerset Radiation Labs</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sorensen & Co., Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sperry Microwave Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sperry Rand, Electronic Tube Div.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Star-Tronics, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Stevens Manufacturing Co.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Sylvan Corporation</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Talley Register Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Tamar Electronics, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Telecon Industries and Engineering</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Test Equipment Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Texco Insulated Wire</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Test & Frequency</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Torrington Manufacturing Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Tower Manufacturing Corporation</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Trimm Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Trygon Electronics, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>United Shoe Machinery Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Unitrade Transistor Corp.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Varian Associates, Recorder Division</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Varian Associates</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Vidar Corporation</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Ward Leonard Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Waterman Electronic Tube Company</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Watkin-Johnson Co.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Watkins Engineering, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Westrex Div.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Westray Div. Ltd.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Wiltron Co.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Winchester Corp. (Zenith Radio Corp.)</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Winchester Electronics, Inc.</td>
<td>Palomar Electronics</td>
</tr>
<tr>
<td>Whycelco, Inc.</td>
<td>Palomar Electronics</td>
</tr>
</tbody>
</table>

REPRESENTATIVE DIRECTORY

- **Mason Electronics**
 - 15-41st Avenue, San Mateo, CA 94404

- **Neely Enterprises**
 - 501 Laurel, San Carlos: 94070
 - 1317-15th St., Sacramento: CA 95820
 - 2-8901

- **O'Halloran Associates**
 - 3821 E. Bayshore
 - Palo Alto: DA 6-1493

- **Peninsula Associates**
 - 1325 Hancock Street, Redwood City: CA 94062

- **Perlmuth Electronics**
 - 941 Charleston Rd., Palo Alto: DA 1-5064

- **Premmc Co., Inc.**
 - 2405 Lincoln Ave., Alameda: CA 94501

- **Recht Associates, Elliott**
 - 175 S. San Antonio Rd., Los Altos: 94024

- **Rupp Co., V. T.**
 - 1182 Los Altos Avenue, Los Altos: 94033

- **Schnitzer Co., T. Louis**
 - 501 S. Mathilda Avenue, Sunnyvale: CA 94086

- **Strickler Company, John E.**
 - 510 B. S. Mathilda Avenue, Sunnyvale: CA 94086

- **Stone Associates, Carl A.**
 - 800 N. San Antonio Road, Palo Alto: DA 1-2724

- **Thompson Associates, R. W.**
 - 4135 El Camino Real, Palo Alto: DA 1-6383

- **Vauhnn Co., G. H.**
 - 1253, Palo Alto: DA 1-6383

- **Walter Associates**
 - 790, Palo Alto: DA 1-6383

- **Whycelco, Inc.**
 - 580 Speargrave Drive, Los Altos: CA 94086

d e c e m b e r 1 5 , 1 9 6 2
PHYSICISTS AND MICROWAVE ENGINEERS
Stanford Research Institute is performing research for government and industrial clients in the following areas:
- Lasers
- Microwave Components
- Low- and High-Power Microwave Filters
- Solid-State Filters
- Parametric Devices
- Antennas

Physicists or Microwave Engineers interested in combining theoretical and experimental research in these areas are invited to inquire about current opportunities.

Enjoy industrial-level salaries and benefits in a university-type research atmosphere.

DA 6-6200, EXT. 3440
STANFORD RESEARCH INSTITUTE
333 Ravenswood, Menlo Park
An equal opportunity employer

MEMBERSHIP

Following are the names of members who have recently been transferred to a higher grade of membership as noted:

Senior Member
G. F. Reiling
James J. Spilker, Jr.

Following are the names of individuals who have been elected to current membership:

<table>
<thead>
<tr>
<th>Z. J. Balogh</th>
<th>B. C. McIntosh</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. C. Bulsara</td>
<td>J. V. Miller</td>
</tr>
<tr>
<td>R. A. Clay</td>
<td>G. T. Moore</td>
</tr>
<tr>
<td>E. B. Crosson</td>
<td>W. H. Sanders</td>
</tr>
<tr>
<td>J. M. Donachy</td>
<td>L. E. Salmer</td>
</tr>
<tr>
<td>A. F. Gaetano</td>
<td>E. G. Shoemaker</td>
</tr>
<tr>
<td>F. K. Gates</td>
<td>J. W. Simonton</td>
</tr>
<tr>
<td>E. Gee</td>
<td>W. B. Tiffany</td>
</tr>
<tr>
<td>M. C. Harding</td>
<td>C. P. Tinebra</td>
</tr>
<tr>
<td>A. A. Kaplan</td>
<td>J. M. Tresidder</td>
</tr>
<tr>
<td>R. E. Larson</td>
<td>H. Van Ardenne</td>
</tr>
<tr>
<td>N. H. T. Lowe</td>
<td>R. A. Zebeli</td>
</tr>
</tbody>
</table>

Following are the names of IRE members who have recently entered our area, thereby becoming members of the San Francisco Section:

<table>
<thead>
<tr>
<th>C. L. Allen</th>
<th>W. L. May</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. J. Archibald</td>
<td>K. K. Mei</td>
</tr>
<tr>
<td>Robert B. Ash</td>
<td>L. Meier III</td>
</tr>
<tr>
<td>Albert Blodgett, Jr.</td>
<td>T. C. Nelson</td>
</tr>
<tr>
<td>J. J. Boncer</td>
<td>R. P. Noble</td>
</tr>
<tr>
<td>C. S. Burrus</td>
<td>J. C. Nord</td>
</tr>
<tr>
<td>R. M. Callahan, Jr.</td>
<td>H. J. Nyser</td>
</tr>
<tr>
<td>K. Chew</td>
<td>G. R. Oeh</td>
</tr>
<tr>
<td>W. A. Cross</td>
<td>J. E. Ohlson</td>
</tr>
<tr>
<td>J. E. Daniels</td>
<td>J. L. Osborne</td>
</tr>
<tr>
<td>J. R. Einfelt</td>
<td>J. E. Rogers</td>
</tr>
<tr>
<td>R. A. Fiedler</td>
<td>R. L. Rollins</td>
</tr>
<tr>
<td>R. D. Harris</td>
<td>W. E. Root</td>
</tr>
<tr>
<td>L. R. C. Hawley</td>
<td>P. R. Roshon</td>
</tr>
<tr>
<td>W. H. Haydl</td>
<td>L. E. Rucker</td>
</tr>
<tr>
<td>Harold F. Howarth</td>
<td>J. C. Samuels</td>
</tr>
<tr>
<td>J. J. Y. Huang</td>
<td>N. D. Salistad</td>
</tr>
<tr>
<td>R. P. Ivens</td>
<td>J. B. Shrock</td>
</tr>
<tr>
<td>P. A. Johanson</td>
<td>G. L. Skelberg</td>
</tr>
<tr>
<td>O. K. Julian</td>
<td>W. L. Skinner</td>
</tr>
<tr>
<td>Leung Kai Chu</td>
<td>G. M. Smith</td>
</tr>
<tr>
<td>D. F. Kiddar</td>
<td>O. L. Watson III</td>
</tr>
<tr>
<td>P. A. Litot</td>
<td>W. B. Windus</td>
</tr>
<tr>
<td>G. K. S. Luke</td>
<td>E. Wong</td>
</tr>
<tr>
<td>C. N. Ly</td>
<td>R. C. Yingling</td>
</tr>
</tbody>
</table>

Opportunity in Montana
As a result of the expanding program at the Electronics Research Laboratory of the Endowment and Research Foundation at Montana State College, the Laboratory has openings for experienced research and development engineers in systems synthesis, solid-state microwaves, communications, direction finding and antennas.

Send résumé to:
C. M. Sorvaag, Staff Member, Electronics Research Laboratory, Montana State College, Bozeman, Montana

INDEX TO ADVERTISERS

Arnold Engineering Co. .. 4
Audio Visual Center ... 13
Beau Brummel Catering 15
Brill Electronics ... 5
Forum Personnel Agency 14
General Radio Company 20
Hammerlund Mfg. Co./R. W. Thompson 14
Hewlett-Packard Company 3
Hughes Aircraft Company 2
Magnetic Industries, Inc. 11
Market Street Van and Storage 15
Miller Company, J. W. 12
Montronics, Inc. ... 11
Moulton Electronics ... 18
Moxon Electronics Corp. 9
Montana State College 18
National Press, The .. 12
Northern California Personnel 10
O’Halloran Associates 13
Precision Instrument Company 12
Professional & Tech. Recruiting Assoc. 15
Shure Brothers Inc. ... 11
Stanford Research Institute................................. 14, 18
Tektronix, Inc. .. 19
Vider Corp. .. 14
Western Gold & Platinum Company 11
NEW VALUE PACKAGE

Sampling sweep and sampling dual-trace plug-in units with the Tektronix Type 561A Oscilloscope

• illuminated internal graticule • rectangular ceramic CRT

This new low-drift sampling system is as easy to operate as a conventional oscilloscope — but with sensitivity and bandwidth possible only through sampling.

HERE’S WHAT YOU CAN DO WITH THIS SAMPLING SYSTEM:

1. Measure millivolt wide-band signals with either 0.4-nsec risetime sampling channel. Time-measurement range extends to 100 microseconds.
2. Trigger internally from A and B signals. Matched internal delay lines in both channels assure accurate time comparisons.
3. Display repetitive signals on 15 calibrated equivalent sweep rates from 0.2 nsec/cm to 10 μsec/cm, accurate within 3%. Magnifier provides 10X sweep expansion...time per dot remains the same for digital readout (with auxiliary equipment).
4. Measure millivolt signals in the presence of a ±1-volt dc component by means of a dc-offset voltage, monitorable at the front panel.
5. Reduce time jitter and amplitude noise, if needed, on the more sensitive vertical ranges and faster sweep rates by means of a smoothing control.
6. Show X-Y (lissajous) patterns, observe single or dual-trace displays, add signals algebraically.
7. Change the signal-source impedance without affecting the dot transient response.
8. Vary sweep delay through 100 nanoseconds.
9. Drive X-Y plotters or similar readout accessories.
10. Select calibrated vertical sensitivities from 2 to 200 mv/div.
11. Choose signal probes for higher input impedances, various attenuations.

TYPE 561A CHARACTERISTICS

UNIQUE CRT • 5-inch rectangular ceramic-envelope tube • Illuminated no-parallax internal graticule on high quality parallel-ground plate-glass face • Controllable graticule lighting — for convenient trace photography • Monaccelerator design and 3.5 KV accelerating potential — for a bright, sharply-defined trace of small spot size •

OTHER FEATURES Improved regulated power supplies • Regulated dc heater supply • Z-axis input • Amplitude calibrator with 18 steps from 0.2 mv to 100 v • Operation from 105 v to 125 v or 210 v to 250 v, 50 to 400 cps.

TYPE 561A Oscilloscope $470
(without plug-ins)
TYPE 3576 Dual-Trace Sampling Unit $1100
TYPE 3T77 Sampling Sweep Unit $650
Probes:
Type P6032 Cathode-Follower Probe $160
Type P6034 Miniature Passive Probe $35
(10X attenuation)
Type P6035 Miniature Passive Probe $35
(100X attenuation)

U.S. Sales Prices, F.O.B. Beaverton, Oregon

The Type 561A also accepts other plug-ins for differential, multi-trace, and wide-band applications, plus the two latest which provide high sensitivity, wide-band, dual-trace operation combined with calibrated sweep delay.

For more information on a Type 561A Oscilloscope and plug-in combinations, please call your Tektronix Field Engineer.

Tektronix, Inc. SAN FRANCISCO FIELD OFFICES
3944 FABIAN WAY • PALO ALTO, CALIF. • Davenport 6-8500
3530 GOLDEN GATE WAY • LAFAYETTE, CALIF. • Yellowstone 5-6101
From Oakland, Berkeley, Richmond, Albany and San Leandro: Clifford 4-5353

december 15, 1962
Militarized Variacs for 350- to 1200-cycle applications

- Approximately 60% lighter in weight than their 60-cycle equivalents.
- Built to withstand shock, vibration, and extreme environments... meet many military specifications.
- Moisture-fungicide protected.
- Core completely enclosed by two cup-shaped winding forms of molded phenolic, not fiber or tape wrap-arounds — precision molded grooves insure positive positioning of turns.
- Patented DURATRAK brush contact surface prevents track deterioration and permits momentary overloads up to 1000% without damage.
- Triple Formvar-coated copper wire provides high breakdown strength between banked turns at elevated temperatures.
- Terminal board equipped with both screws and soldering lugs — imprinted with terminal numbers, wiring diagram, and nominal voltage between taps.
- Large radiating surface — protects brush and track from heat damage.
- Counterbalanced rotating parts hold setting under shock and vibration.
- Low-loss, high-silicon steel, strip-wound core.
- Brush designed for constant and correct contact pressure.
- Resin-impregnated glass cloth insulation between coil and base.
- Winding taps concealed for protection from damage.
- 2-ampere model (Type M2) has over 400 turns for applications requiring high resolution.
- Overvoltage taps standard on all models.
- Ganged and motor-driven models available.

Type M5 Variac® Continuously Adjustable Autotransformer

<table>
<thead>
<tr>
<th>Type</th>
<th>Rated Input Voltage</th>
<th>Line-Voltage Connection</th>
<th>Overvoltage Connection</th>
<th>Net Weight Pounds</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2</td>
<td>120</td>
<td>0.37 2.4 0-120</td>
<td>0-140 2.4</td>
<td>2</td>
<td>$14.50</td>
</tr>
<tr>
<td>M5</td>
<td>120</td>
<td>0.94 6 0-120</td>
<td>0-140 6</td>
<td>3½</td>
<td>18.50</td>
</tr>
<tr>
<td>M10</td>
<td>120</td>
<td>1.56 10 0-120</td>
<td>0-140 10</td>
<td>6½</td>
<td>30.00</td>
</tr>
<tr>
<td>M20</td>
<td>120</td>
<td>3.12 20 0-120</td>
<td>0-140 20</td>
<td>13</td>
<td>48.00</td>
</tr>
</tbody>
</table>

*Rated current should not be exceeded for the overvoltage connection.

Write for the new Variac Bulletin.

GENERAL RADIO COMPANY
WEST CONCORD, MASSACHUSETTS

Sales Engineering Office in SAN FRANCISCO: 1186 Los Altos Avenue, Los Altos, California
James G. Hussey • Donald M. Vogelaar
Tel: 415 948-8333 • TWX: 415 949-7964

IN CANADA
(Toronto) 246-317

General Radio
(Overseas)
Zurich, Switzerland