EDITOR’S PROFILE of this issue

from a historical perspective ...

with Paul Wesling, SF Bay Area Council GRID editor (2004-2014)

January, 1965:
Cover: An aerial photo of the Stanford Linear Accelerator, now about half-finished; at 2 miles long, it will be the most powerful atom-smasher in the world. I used to ride my bike out along Sand Hill Road in the springtime to study on a hill overlooking the construction site. More details on page 12.

Page 13: We get a look at the Boeing 733, the company’s planned Supersonic Transport (SST)
meeting reminder

January 12 (Tuesday) Industry and General Application
January 14 (Thursday) Information Theory
January 18 (Monday) Biomedical Engineering, Engineering Management/Engineering Writing and Speech
January 19 (Tuesday) Antennas and Propagation
January 20 (Wednesday) Military Electronics
January 20 (Wednesday) Santa Clara Valley Subsection
January 21 (Thursday) Microwave Theory and Techniques, Nuclear Science
January 25 (Monday) East Bay Subsection
January 26 (Tuesday) Automatic Control, Computer, Prod. and Telemetry
January 27 (Wednesday) Engineering and Production, Space Electronics and Electron Devices
January 28 (Thursday) Communication Technology, Elec.
February 4 (Thursday) Audio
WRITE OR CALL NOW for Tektronix Booklet on the Type 502A DUAL-BEAM OSCILLOSCOPE

with 100 µV/cm sensitivity

FOR THE BOOKLET LISTING COMPLETE CAPABILITIES, CALL YOUR FIELD OFFICE.

Read about the wide range of features for waveform-comparison applications which the Tektronix Type 502A Oscilloscope can cover. For the Type 502A is a dual-beam oscilloscope with two identical vertical amplifiers, differential input at all sensitivities, single-sweep capability and 100 microvolt/centimeter basic sensitivity.

With the instrument, you can measure cause and effect on the same time base . . . observe waveforms at two circuit points simultaneously . . . display X-Y curves with one or both beams . . . plot one transducer output against another . . . measure phase angles and frequency differences . . . use differential input for cancelling common-mode signals.

This oscilloscope display shows the output from a commercial transducer (upper trace) and the output from a developmental transducer (lower trace)—simultaneously.

Tektronix, Inc. SAN FRANCISCO FIELD OFFICES

3944 FABIAN WAY • PALO ALTO, CALIF • Phone: 326-8500
1709 MT. DIABLO BLVD. • WALNUT CREEK, CALIF. • Phone: 935-6101
From Oakland, Berkeley, Richmond, Albany and San Leandro: 254-5353
Now at each of the voltage/current ratings in the LVR Series you can choose between (1) a competitively priced Constant Voltage/Constant Current automatic crossover supply with meters and front panel controls or (2) a low-priced Constant Voltage/Current Limiting supply with output voltage control located on the rear panel. Use of silicon transistors in differential error amplifier insures long term stability and low temperature coefficient. Highest quality components and circuit techniques.

- Ripple less than 500μVolts
- Load and Line Regulation: less than 0.01%
- Transient Recovery Time: less than 50μseconds to within 10 millivolts
- Remote Programming
- Remote Error Sensing
- Temperature Rating: Operating, 0-50°C; Storage, —20 to +71°C
- Auto-Series, Auto-Parallel, Auto-Tracking operation

SEND FOR
NEW 65 PAGE CATALOG
AND APPLICATION MANUAL

Prices Included

YOURS FOR THE ASKING... FROM FACTORY OR LOCAL H-LAB/HP SALES OFFICE

HEWLETT PACKARD NEELY SALES DIVISION

North Hollywood, (213) 877-1282 • San Carlos, (415) 591-7661 • Sacramento, (916) 482-1463 • San Diego, (714) 223-8103 • Scottsdale, (602) 945-7601 • Tucson, (602) 623-2564 • Albuquerque, (505) 255-5586 • Las Cruces, (505) 526-2486 • Seattle, (206) 454-3971
It's not the size of our roar that keeps us the sales leader in the computer industry. It's simply the fact that E-H has consistently developed pulser with the advanced specs computer people must have—instruments with ultra fast rise times and high repetition rates.

Reliability is another reason E-H pulser leads the pack in sales. We use nothing but precision components, then rate them on the conservative side. As a result, every E-H pulse has a comfortable margin of performance beyond its written specifications.

SOME E-H FIRSTS
1959—MODEL 120A: First electronic nanosecond pulse generator.
1960—MODEL 120B: First pulser with 10 MC rep rate.
1961—MODEL 121: First 1 amp nanosecond pulse generator.
1962—MODEL 120D: First 20 megacycle sub nanosecond pulse generator.
1963—MODEL 123: First 50 volt all solid-state pulser
1964—MODEL 122: First 200 MC rep rate nanosecond pulse generator.
When you think RCA

Semi- conductors

We stock in depth the most complete line of RCA Semiconductors to provide a one stop, single source for all requirements of our R&D, O.E.M. and industrial customers. Next time you need Semiconductors, think RCA . . . think BRILL for immediate off-the-shelf delivery to any point in northern California.

33 years the West's leading electronics parts distributor

BERKLEY

I

Course descriptions, scheduling details, and enrollment information are available from Engineering Extension, University of California, Berkeley 4, telephone 845-6000, Ext. 4151, or from the San Francisco Extension Center, 55 Laguna St., telephone UN 1-6833.

cover

The two-mile linear accelerator being built by Stanford University under contract with the AEC is now approximately half completed, the 20 BeV atom-smasher occupying 480 acres of campus land. At upper right is Half Moon Bay, at upper left—Searsville Lake. Sand Hill Road extends from upper left to Menlo Park at lower right. The largest scientific instrument yet built, the accelerator will permit scientists to probe deeper than ever before into the structure of the atom. For more on SLAC, see page 12.

(PhotobyRolandQuintero)
OVERSEAS TIES

S. V. Hart, chief consultant, Electronics Engineers International, San Francisco, will discuss management ties with overseas electronics—one approach to corporate diversification—at the January 18 meeting of the Engineering Management chapter.

The current reorientation of electronics firms in the Bay Area has posed the question: "How can we diversify into commercial-industrial products and markets quickly; how can we become less dependent on government contracts and enter the higher-profitability markets of peacetime consumption?"

Certainly, one approach is foreign markets. However, it is rather late to attempt to "break into" overseas markets by the conventional route; i.e., by export agents and sales representatives. Establishing a company-owned subsidiary is time-consuming and costly. Is there a better way?

The talk will describe a solution which has been proven in practice. It amounts to: trading know-how for participation in an overseas company.

This approach has many of the advantages of a company-owned foreign operation without the disadvantages of delays, expenses, and the (often painful) adjustment to an unfamiliar cultural and technological climate.

(Continued on page 8)

RECORDER PRODUCTION

Manufacturing engineering’s role in the development and production of commercial and military tape recorders will be discussed by Walter Scott, manager of manufacturing engineering, Precision Instruments, Palo Alto, at the January 26 meeting of the Product Engineering and Production chapter.

A graduate of the University of California in industrial engineering, Mr. Scott has had experience with Friden, Rheem, and Ampex, where he was a manufacturing engineer and then moved into design engineering, handling packaging on systems such as Dynasor and Silver King.
MEETING CALENDAR

Communication Technology
7:30 P.M. • Wednesday, January 27
The increasing importance of communications for improved utility operations
W. J. Enmons, supervising communications engineer, and
D. C. Gregory, communications engineer, both of Pacific Gas & Electric Co.
Place: Auditorium, ground floor, PG&F Building, 245 Market St., San Francisco
No host cocktails at 5:30 P.M.
Dinner: 6:00 P.M., The Iron Duke, 132 Bush St., San Francisco, $4.00
Reservations: F. S. Beale, 591-8461, Ext. 292, by 4:30 P.M. of January 26

Computer
8:00 P.M. • Tuesday, January 26
Content addressed memories
Dr. Harold Petersen, IBM, San Jose
Place: GE Computer Laboratory, 310 DeGuigne Drive, Sunnyvale
Dinner: 6:15 P.M., Old Plantation, El Camino and Bernardo, Sunnyvale
Reservations: none required

Electron Devices
8:00 P.M. • Wednesday, January 27
The Gunn effect—microwave oscillations in gallium arsenide
Dr. Hebern Kroener, Varian Associates, Palo Alto
Place: PH 101, Stanford University
Dinner: 6:00 P.M., Rick's Swiss Chalet, 4085 El Camino Way, Palo Alto
Reservations: Mrs. Williams, 854-3300, Ext. 557, by January 26

Engineering Management
8:00 P.M. • Monday, January 18
(Joint with Engineering Writing and Speech, see below)
Management ties with overseas electronics—one approach to corporate diversification
S. V. Hart, chief consultant, Electronics Engineers International, San Francisco
Place: Granger Associates, 1601 California Ave., Palo Alto
Dinner: 6:15 P.M., Rick's Swiss Chalet, 4085 El Camino Way, Palo Alto
Reservations: 326-6200, Ext. 2350, by January 15

Engineering Writing and Speech
8:00 P.M. • Monday, January 18
(Joint with Engineering Management, see above)

Engineering Writing and Speech
8:00 P.M. • Wednesday, February 24
A proposal philosophy—some new angles in marketing development
Frank Mansur, Lockheed Missiles & Space Co., Sunnyvale
Place: To be announced in the February Grid
Dinner: To be announced in the February Grid

Industry and General Application
8:00 P.M. • Tuesday, January 12
Panel presentation on the San Francisco Bay Area Rapid Transit development program
Criteria for selection of electrical systems and equipment by J. R. Asmus; train control systems by W. P. Quintin, Jr.; propulsion systems by K. L. Lawson; and power distribution systems by C. K. Olsen
Place: Maconchi Restaurant, 125 Battery St., San Francisco
Cocktail hour: 6:30 P.M.
Dinner: 7:00 P.M.
Reservations (before January 10): Alex Tseng, SLAC: 854-3300, Ext. 534, or
Dan McDade, 230 Ryan Way, South San Francisco, 761-1360
Transportation: Arrangements have been made to have cars available for home returning to East Bay, Marin County, and Peninsula areas

meeting ahead
BART PROGRAM
A four-member panel will discuss the San Francisco Bay Area Rapid Transit development program at the January 12 meeting of the newly formed Industry and General Applications chapter.

The panelists, all electrical engineers with the joint venture engineering firm responsible for the detailed design and management of construction of the system, Parsons, Brinckerhoff, Tudor-Bechtel, are J. R. Asmus, W. P. Quintin, Jr., K. L. Lawson, and C. K. Olsen. Their respective subjects will be criteria for selection of electrical systems and equipment; train control systems; propulsion systems; and power distribution systems.

Mr. Asmus, a graduate of the University of Texas, is chief electrical engineer of the firm. He was formerly senior engineer in the power and industrial division of Bechtel Corp., responsible for the engineering of various utility projects, and was formerly employed by International Engineering Co. and Pacific Gas & Electric.

Mr. Quintin, a graduate of Ohio State University and a senior electrical engineer responsible for the automatic train control and communications systems, worked on another rapid transit project and other assignments with Bechtel, and was formerly associated with the Union Switch & Signal Division of Westinghouse Air Brake Co.

Mr. Lawson, a graduate of Northwestern University and a senior electrical engineer responsible for coordinating the power, control, and auxiliary apparatus on the transit vehicle, worked on several industrial projects with Bechtel and was formerly employed by Westinghouse Electric Corp. and Aluminum Co. of America.

Mr. Olsen, a graduate of the University of Utah and a senior electrical engineer responsible for the wide electrical power equipment, was assigned to pipeline, power, and industrial projects at Bechtel, and was formerly vice president of a consulting firm in Utah.

meeting ahead
VALUE ENGINEERING
The emphasis the Department of Defense is now placing on value engineering, the background of the present market and its impact on military business, and how value engineering should be applied to gain a truly competitive cost position in military and commercial contracts will be discussed by Alfred H. Petersen, LMSC, Sunnyvale, at the January 20 meeting of the Military Electronics chapter.

j anuary, 1965
MEETING CALENDAR

Information Theory

8:10 P.M. • Thursday, January 14

Maximum likelihood processing for seismometer arrays
Dr. M. J. Levin, Lincoln Labs., Lexington, Mass.

Some new results on the ambiguity function
Dr. R. Price, Lincoln Labs.

Place: Philco Auditorium, 3825 Fabian Way, Palo Alto
Dinner: 6:15 P.M., Rickeys Hyatt House, 4219 El Camino Real, Palo Alto
Reservations: Mrs. D. Saltzman, 326-4350, Ext. 4101, by January 13

Microwave Theory and Techniques

8:00 P.M. • Thursday, January 21

(First of three lectures on solid-state microwave devices)
A review of modern low and ultra low noise microwave pre-amplifiers
C. Louis Cuccia, director, research and engineering, Microwave Electronics Corp.
Place: Room 1A, Hewlett-Packard Co., 1501 Page Mill Road, Palo Alto
Dinner: 6:30 P.M., Rick's Swiss Chalet, 4085 El Camino Way, Palo Alto
Reservations: Bob Prickett, HP Co., 326-7000, Ext. 2117, by January 19
Second lecture: Thursday, February 4—time and place same as above
Third lecture: Tuesday, February 23—time and place same as above

Military Electronics

8:00 P.M. • Wednesday, January 20

Value Engineering
A. H. Petersen, Lockheed Missiles & Space Co., Palo Alto
Place: Lockheed Auditorium, Bldg. 202, 3251 Hanover St., Palo Alto
Reservations: R. W. Franks, 739-4321, Ext. 53594, by January 19

Nuclear Science

8:00 P.M. • Thursday, January 21

Business session on formation of San Francisco chapter, followed by showing of film on Civilian Application of Nuclear Explosives, 1964 (recently seen at Geneva Conference)
Place: Coral Room, Livermore Union High School, 1600 Maple St., Livermore
No dinner

Product Engineering and Production

8:00 P.M. • Tuesday, January 26

Manufacturing engineering's role in the development and production of commercial and military tape recorders
Walter Scott, manager, Mfg. Engineering, Precision Instruments, Palo Alto
Place: Precision Instruments, 3170 Porter Drive, Palo Alto (Porter Drive intersects Page Mill Road just south of the entrance to Hewlett-Packard)
Dinner: none

Space Electronics and Telemetry

8:15 P.M. • Tuesday, January 26

(Joint with Automatic Control—see above)
Gravity gradient stabilization
Duane Scott, Research specialist, LMSC
Place: Lockheed Auditorium, Bldg. 202, 3251 Hanover St., Palo Alto
Dinner: 6:15 P.M., El Camino Bowl, 2025 El Camino Real, Mountain View
Reservations: Charles Jangorchian, 697-7774, by January 26

meeting ahead

MEMORIES

Dr. Harold E. Petersen of the advanced systems development division of IBM's West Coast systems laboratory, Los Gatos, will address the Computer chapter on January 26. His subject will be content addressed memories.

A graduate of Stanford University and the University of Wisconsin, Dr. Petersen has been with IBM since 1957 at facilities in Los Gatos, San Jose, White Plains, Yorktown Heights, and Ossining. He has published widely on the subject of memory systems and has been associated with a number of patents, both foreign and domestic, in the area of read-only and associative memory systems, electron beam systems, character sensing, cryogenics, and error detection.
at NATIONAL PRESS there is always someone with “know-how” available to answer your questions or help solve your printing problems!

Let us give your printing a

BRIGHT NEW LOOK

that will make it more persuasive, more purposeful. Creative printing makes the difference!

You can entrust your printed message to the reliable people at

THE NATIONAL PRESS
In Stanford Industrial Park • 850 Hansen Way • PALO ALTO

PHONE
327-0880
LITHOGRAPHY • PRINTING PUBLISHING

Serving the Peninsula with Printing of Character since 1946
3 reasons to fly TWA to the IEEE Show in March

1. Convenient Schedules to New York

From San Francisco

<table>
<thead>
<tr>
<th>Leave San Francisco</th>
<th>Arrive Destination</th>
<th>Flight No.</th>
<th>Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00 A</td>
<td>4:45 P</td>
<td>42</td>
<td>NON-STOP</td>
</tr>
<tr>
<td>11:15 A</td>
<td>9:34 P</td>
<td>60</td>
<td>Two-stop</td>
</tr>
<tr>
<td>1:30 P</td>
<td>9:15 P</td>
<td>46</td>
<td>NON-STOP</td>
</tr>
<tr>
<td>3:15 P</td>
<td>11:40 P</td>
<td>48</td>
<td>One-stop</td>
</tr>
<tr>
<td>Oak 4:05 P</td>
<td>11:40 P</td>
<td>48</td>
<td>One-stop</td>
</tr>
<tr>
<td>Oak 9:30 P</td>
<td>6:20 A</td>
<td>166</td>
<td>One-stop</td>
</tr>
<tr>
<td>10:45 P</td>
<td>6:30 A</td>
<td>44</td>
<td>NON-STOP</td>
</tr>
</tbody>
</table>

2. Convenient Schedules from New York

Return to San Francisco

<table>
<thead>
<tr>
<th>Leave Destination</th>
<th>Arrive San Francisco</th>
<th>Flight No.</th>
<th>Stops</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30 A</td>
<td>12:15 P</td>
<td>45</td>
<td>NON-STOP</td>
</tr>
<tr>
<td>12:00 N</td>
<td>2:45 P</td>
<td>41</td>
<td>NON-STOP</td>
</tr>
<tr>
<td>12:00 N</td>
<td>Oak 3:31 P</td>
<td>41</td>
<td>via San Francisco</td>
</tr>
<tr>
<td>Nk 1:35 P</td>
<td>8:31 P</td>
<td>61</td>
<td>Two-stop</td>
</tr>
<tr>
<td>2:45 P</td>
<td>Oak 7:29 P</td>
<td>165</td>
<td>One-stop</td>
</tr>
<tr>
<td>4:00 P</td>
<td>6:45 P</td>
<td>43</td>
<td>NON-STOP</td>
</tr>
<tr>
<td>Nk 5:30 P</td>
<td>9:39 P</td>
<td>31</td>
<td>via Los Angeles</td>
</tr>
<tr>
<td>7:00 P</td>
<td>9:45 P</td>
<td>49</td>
<td>NON-STOP</td>
</tr>
<tr>
<td>10:50 P</td>
<td>4:21 A</td>
<td>15</td>
<td>Two-stop</td>
</tr>
</tbody>
</table>

3. TWA Offers Service

to 70 U.S. cities and 18 world centers abroad. TWA offers the only non-stop jet service to New York from the East Bay.

For reservations call:
San Francisco YUkon 6-1300
So. San Francisco 589-8700
Oakland 451-2747
Palo Alto 323-1323
Sacramento Hickory 4-7147
San Jose 241-8010

Meeting ahead

LARGE ANTENNAS

Anti-fading techniques for large antennas will be the subject of Prof. Edgar C. Hayden, University of Illinois, at the January 19 meeting of the Antennas and Propagation chapter.

In HF band communication circuits, the use of a receiving antenna of high-directive gain does not of itself assure reduction of the fading range of a signal. It is possible, however, to exploit the large aperture of a directive system to produce an anti-fading action within the confines of a single array. The degree of improvement obtainable depends on the cause of the fading, the character of the incident signal field, and the aperture of the array. In practical circumstances it may range from small values up to perhaps 12 db. of reduction in the fading range. Since the improvement occurs at the low-signal end of the range, it is equivalent to an equal increase in transmitter power.

A graduate of Ohio State University and University of Illinois, Prof. Hayden has been a member of the radio-location research laboratory since 1946 and worked with the antenna research group for a year. While with the group he made studies of the efficiency of certain aircraft antenna structures and the degree of performance required of a receiving antenna system, the latter resulting in a method of determining the performance of a receiving antenna system and of integrating this performance into that of a complete receiving system. A new method was proposed for writing performance specifications for receiving antenna systems.

In the laboratory, his activities have been principally directed toward the antenna and propagation aspects of the problem. In particular, the characteristics of ionospherically propagated radio signals have been the subject of experimental study.

Meeting ahead

TAPE MANUFACTURE

Donald F. Eldridge, vice president and technical director of Memorex Corp., Santa Clara, will discuss the manufacture of precision magnetic tape at the January 28 meeting of the Audio chapter.

The major steps in the manufacture of magnetic tape will be discussed. Specifically described are mixing, dispersing, storage, coating, orienting, drying and curing, surface treatment, slitting, rewinding, packaging, inspection, and testing. They are covered in sufficient detail to provide the user with an appreciation of the complex processes, equipment, testing, and care which are required to produce premium quality magnetic tape.

One of the striking features of precision magnetic tape is that every single detail of each one of these steps must be done absolutely correctly. There is no possibility of going back and reworking, as in equipment manufacture. It is this single fact which places the greatest demand on the manufacturer and which makes the production of premium quality magnetic tape one of the most exacting tasks in the world.

Mr. Eldridge received the B.S.E.E. degree from Lehigh University, Bethlehem, Pennsylvania, in 1948.

He joined the Boeing Airplane Company, Seattle, Washington, where he engaged in work covering many phases of dynamic data acquisition and reduction. In 1956 he became affiliated with the research division of Ampex Corporation, where he did research on many aspects of magnetic recording. His last position there was head of the magnetics department of the Ampex Corporate Research Division, from which he resigned in December, 1960. He is the author of numerous articles and holds many patents in the field of magnetic recording.

More overseas ties

Often overlooked is the fact that companies overseas have specialized in precisely those types of products which we are now seeking: commercial and industrial applications of electronics for the medium-size and small user. We, on the other hand, have been pioneers in the technology, thanks to mass government support (which the overseas companies lack). Obviously, there is much to be gained by an exchange between these two diverse oriented groups of manufacturers.

The speaker will outline a five-step approach which utilizes to best ad-
The Catalysts. The purpose of the meeting is as old as business itself—a seller and a buyer convening to examine if one has what the other needs. The seller is a technical sales representative; he represents engineering-oriented firms which design and build precision products for specialized markets. The buyer is a manufacturer; he depends upon outside suppliers to supplement his own in-house capabilities. The purpose of the meeting is as old as business itself—but the participants are of a new breed. They’re technologists seeking a better product: businessmen dealing in the continuing ascent of the human condition.
SENIOR ENGINEERS
B.S., M.S., Ph.D.

Urgent Requirements
by Our Clients in
Commercial Product
Areas for Experienced
Hardware Engineers in

VIDEO & DISPLAY SYSTEMS

SEMICONDUCTOR DEVICES & PROCESSES

MAGNETIC COATINGS & MATERIALS

RF & DIGITAL INSTRUMENTS

NORTHERN CALIFORNIA PERSONNEL
(a technical agency)

220 CALIFORNIA AVE.
PALO ALTO
DA 6-7390

meeting ahead

GUNN EFFECT

Dr. Herbert Kroemer, Varian Associates, Palo Alto, will discuss the Gunn effect of microwave oscillations in gallium arsenide at the January 27 meeting of the Electron Devices chapter.

About two years ago, J. B. Gunn of IBM discovered that the current through a crystal of n-type gallium arsenide breaks into microwave oscillations if the applied field exceeds a certain threshold value. Pulsed r.f. outputs of over 40 watts have since been observed around 1 Ge, as well as lower outputs under c.w. conditions, and at high frequencies (up to at least 6.5 Ge). The frequency depends only weakly on the external circuit, but is primarily a function of the crystal thickness, being about inversely proportional to the thickness, as for a transit-time phenomenon. However, evidence is rapidly accumulating that the actual mechanism is one that semi-conductor researchers have been looking for since around 1950: a true negative specific conductivity (field-controlled). The transit-time effects arise from the fact that a field-controlled bulk negative conductance is inherently electrically unstable, and must break up into alternating domains of high and low field which travel along the crystal, thus giving rise to a current that oscillates with a frequency inversely proportional to the domain transit time.

The mechanism leading to the negative conductivity is probably one of transferring the electrons into the higher-lying “satellite valleys” of the gallium arsenide band structure, where they have a substantially reduced mobility.

Dr. Kroemer, who received his Ph.D. in physics from the University of Goettingen, originated and published the drift-transistor concept, which forms the basis of all present high-frequency transistors, namely, the concept of a built-in field due to an exponentially graded base resistivity. In 1954, Kroemer joined the RCA Laboratories in Princeton, New Jersey, where he established the feasibility of his ideas experimentally. After the drift-transistor work, Kroemer proposed new semiconductor structures with variable energy gap, particularly greatly improved transistors with a wide-gap emitter, this idea is only now used experimentally in transistors using new materials. During a search for microwave negative-mass carriers in semiconductors he proposed their utilization in microwave amplifiers and generators.

After two years (1957-59) in Germany, where Kroemer headed a semi-conductor research group in the newly established German Research Laboratories of the Philips Company, he returned to the United States and has been in the central research laboratories at Varian Associates since June 1959. He now heads a semiconductor research group which is working on a variety of non-conventional (i.e., non-transistor) semiconductor principles.

meeting ahead

BLOOD PRESSURE INSTRUMENTS

Dr. Alvin Sacks, head of the hemodynamics section of Vidya Division of Itek Corp., Palo Alto, will discuss blood pressure instruments and what they really mean at the January 18 joint meeting of the Biomedical Engineering chapter and the ISA.

The standard blood pressure cuff has now been in clinical use for something over 60 years. It is a classical example of a simple, reliable, repeatable, sturdy instrument requiring a minimum of calibration. But what precisely does it measure? This has been the subject of a combined experimental and analytical investigation at Vidya Division of Itek for the past three years. Dr. Sacks, with the help of his colleagues, has developed, tested, and field-tested a new instrument, the Vidya blood pressure monitor, which is claimed to be more reliable, easier to use, and more accurate than the standard mercury or sphygmomanometer.

Blood pressure was first measured by the Frenchman Borelli in 1628, but the standard monitor has been in use since 1960. The cuff is applied snugly to the upper arm, and the air is pumped out until the patient feels some discomfort, at which point a reading is taken. The cuff then inflates to a pressure of 100 mm. Hg and remains inflated for 20 seconds. The pressure is then released slowly, and the exact time that the fifth systolic sound is heard is recorded. In 1896, Korotkoff sounds were heard in the stethoscope during blood pressure determinations. Since then, the Korotkoff sounds have been the subject of much research.

The cause of the Korotkoff sounds heard in the stethoscope during blood pressure determinations is still a subject of conjecture. Vidya's theoretical and experimental investigations now indicate that the sounds arise from an elastic instability of the vessel wall. An attempt is now being made to predict the cuff pressures at which the instability may be expected.

Dr. Herbert Kroemer, Varian Associates, Palo Alto, will discuss the Gunn effect of microwave oscillations in gallium arsenide at the January 27 meeting of the Electron Devices chapter. About two years ago, J. B. Gunn of IBM discovered that the current through a crystal of n-type gallium arsenide breaks into microwave oscillations if the applied field exceeds a certain threshold value. Pulsed r.f. outputs of over 40 watts have since been observed around 1 Ge, as well as lower outputs under c.w. conditions, and at high frequencies (up to at least 6.5 Ge). The frequency depends only weakly on the external circuit, but is primarily a function of the crystal thickness, being about inversely proportional to the thickness, as for a transit-time phenomenon. However, evidence is rapidly accumulating that the actual mechanism is one that semiconductor researchers have been looking for since around 1950: a true negative specific conductivity (field-controlled). The transit-time effects arise from the fact that a field-controlled bulk negative conductance is inherently electrically unstable, and must break up into alternating domains of high and low field which travel along the crystal, thus giving rise to a current that oscillates with a frequency inversely proportional to the domain transit time.

The mechanism leading to the negative conductivity is probably one of transferring the electrons into the higher-lying “satellite valleys” of the gallium arsenide band structure, where they have a substantially reduced mobility.

Dr. Kroemer, who received his Ph.D. in physics from the University of Goettingen, originated and published the drift-transistor concept, which forms the basis of all present high-frequency transistors, namely, the concept of a built-in field due to an exponentially graded base resistivity. In 1954, Kroemer joined the RCA Laboratories in Princeton, New Jersey, where he established the feasibility of his ideas experimentally. After the drift-transistor work, Kroemer proposed new semiconductor structures with variable energy gap, particularly greatly improved transistors with a wide-gap emitter, this idea is only now used experimentally in transistors using new materials. During a search for microwave negative-mass carriers in semiconductors he proposed their utilization in microwave amplifiers and generators.

After two years (1957-59) in Germany, where Kroemer headed a semiconductor research group in the newly established German Research Laboratories of the Philips Company, he returned to the United States and has been in the central research laboratories at Varian Associates since June 1959. He now heads a semiconductor research group which is working on a variety of non-conventional (i.e., non-transistor) semiconductor principles.
meeting ahead

MTT LECTURE SERIES

The first of three lectures on solid-state microwave devices will be presented by C. Louis Cuccia, director, research and engineering, Microwave Electronics Corp., Palo Alto, at the January 21 meeting of the Microwave Theory and Technique chapter; other lectures being scheduled for February 4 and February 23.

Mr. Cuccia, a graduate of the University of Michigan, who has done graduate work in theoretical physics at Princeton University, will present a review of modern low and ultra low noise microwave pre-amplifiers, a comparison of performance data, and mechanical configurations of all types discussed. The talk will conclude with a description of these devices and a comparison of the various trade-offs between weight, noise figure, and saturated power-handling capability which have accounted for their development.

Robert D. Hall, hp associates, will discuss solid state microwave switching on February 4. Donald Geppert, Stanford Research Institute, and Richard Soschen, hp associates, will discuss hot carrier devices on February 23.
Meeting Ahead

Utility Communications

The increasing importance of communications for improving utility operations will be the subject at the Communications Technology chapter meeting on January 27.

Two engineers will share in describing the very extensive private communication system of the Pacific Gas and Electric Company, showing how it is utilized to improve service and reduce costs. With electric generating stations, transmission and distribution facilities, and with gas pickup and transmission facilities scattered all over the state, and with interconnections with other utilities at several points, instant communications are often vitally necessary. W. I. Emmons, supervising communications engineer, will present the talk, assisted by Donald G. Gregory, communications engineer.

A discussion period will follow presentation of the talk, after which the group will have an opportunity to tour the communication facilities located in the PG&E Headquarters Building at 245 Market Street.

Mr. Emmons graduated from Heald College in 1934 with major in E.E., and started selling Weston electrical instruments. He served more than four years in the Navy and in 1945 began his service with Pacific Gas and Electric Company. He is a registered professional engineer, State of California.

Mr. Gregory graduated from the University of California in 1958 with E.E. as his major. He immediately began work with Pacific Gas and Electric Company in the general construction department, then in the system protection group, transferring into communications in 1963. He is a member of IEEE and a registered professional engineer in the State of California.

Meeting Ahead

More on SLAC

Douglas William Dupen, technical information officer of the Stanford Linear Accelerator, will discuss the project’s significance to the nuclear field at the January 25 joint meeting of the East Bay Subsection and the ISA. Special emphasis will be placed on technological problems and the techniques developed to solve them.

The research machine, an aerial view of which is shown on the cover, will be the most powerful electron accelerator ever built and is destined to become one of the most important scientific tools in its field. It is another step along the paradoxical path which requires larger and larger machines to study the structure of matter in smaller and smaller detail. The high energy beam-switching arrangements and efficiently designed research areas will allow experiments to be prepared and operated simultaneously.

Although not scheduled for operation until April, 1967, the accelerator is already known throughout the world. It will be available to scientists from other countries as well as those from the U.S. Its use will be determined by choosing the most promising physics experiments from the many proposed.

Demineralized Water Service

For NO. CALIFORNIA

Highest quality, mineral-free water, under pressure, where you want it, when you want it! No capital outlay; only cost is water used.

Permutit Portable Demineralizers

delivered to you fully charged, ready to hook up and produce mineral-free water immediately. When exhausted, we remove the unit and replace it with a new one, fully charged. Chemical quality of Permutit demineralized water is guaranteed to exceed that of USP Specifications for “purified water.” Demineralized water also delivered in bulk.

Alhambra National Water Company, Inc.

Demineralizer Division

2217 Revere Ave., San Francisco
Telephone VA 6-8700

Service offices in Oakland, Santa Clara, Santa Rosa, Salinas, Redwood City, Vallejo

ELECTROMAGNETIC SYSTEMS LABORATORIES

FOR UNUSUAL OPPORTUNITIES

Antenna Engineer

Responsibilities to include antenna analysis and design in conjunction with electromagnetic systems problems. Analytical ability and a minimum of 2 years varied antenna design experience required. M.S., propagation and system background desired.

Signal Analysis/Systems Engineer

Data processing experience involving use of wide band tape recorders, optical chart recorders, and photographic equipment required. Knowledge of various types of telemetry systems desirable.

ESL, Incorporated, a dynamic, new, associates owned electronics firm, is developing a team of highly trained engineers and scientists, specifically to conceive and develop specialized electronic warfare systems.

You are invited to contact us at your earliest convenience or send your resume to D. L. Jacobs

ESL, INC.
3950 Fabian Way
Palo Alto, California
327-2160

An Equal Opportunity Employer

AEROSPACE IN ORBIT

The initial meeting of the San Francisco Aerospace chapter was well attended and featured a talk on the Boeing Supersonic Transport (SST), very ably presented by Boeing's Sidney Wiener, chief of customer engineering. The meeting was arranged by Jim Aldrich, chief electrical engineer of United Air Lines.

Mr. Wiener discussed the many designs that Boeing evaluated, starting back as early as 1951. More than 10,000 hours of wind-tunnel time disclosed that a variable sweep wing would meet all requirements. Slides were shown of very promising designs which were discarded, one by one, in favor of the final design, the model 733-198. This final design has been submitted to FAA as Boeing's entry in the SST field. The 733-198 will have a wing span of 173 feet with a fuselage length of 203 feet. It will weigh 182,500 pounds empty, carry 235,840 pounds of fuel (35,200 gallons), and, in addition, carry a 30,000-pound payload for 4,000 miles. (This payload is equivalent to roughly 150 passengers plus baggage.)

The construction of the aircraft will be of conventional alloys, with the addition of many Titanium alloys. The skin will be of Titanium alloy because of the high skin temperatures—approximately 500°F. Much effort went into the design of the wing pivots, and a final design was selected which is hydraulically operated to swing the wings back approximately 70 degrees. The system is quite redundant and studies indicate that failure of the wing sweep-back mechanism will be exceedingly remote. A single cockpit control will be used to vary the wing angle; leading and trailing edge flap positions will be automatically coordinated with sweep-back angle for maximum aerodynamic efficiency.

The 377-198 will cruise at 60,000 to 65,000 feet, with a service ceiling of 80,000 feet. Fully loaded, it will take off in 4,300 feet of runway. Normal take-off speed is 154 knots. Minimum flight control speed is 94 knots. Take-off is actually shorter than the conventional 707 or DC-8 and also considerably quieter in the immediate airport vicinity. It will climb to 60,000 feet in 16.4 minutes; however, it will require 40 minutes to descend. Descent will actually start 275 miles from destination.

The "question and answer" period was lively and interesting. One question, in particular, pertained to landing the aircraft with the wings fully swept aft. The answer was that it would require 8,000 feet of runway with a landing speed of roughly 180 knots. The only difference would be that the aircraft would approach the field in a more nose-up attitude than during a normal landing with the wings extended.

R. W. SUMNER

MEASUREMENT SYSTEMS/COMPONENTS

WRITE NOW!

If you buy, specify or work with systems for the measurement of PRESSURE, FORCE, ACCELERATION, VIBRATION or DISPLACEMENT, you will need a copy of the new, complete Omega catalog. This catalog describes the latest innovations in the measurement systems field, and includes a quick-reference chart relating specific measurement applications to the appropriate components.

For your specific application problems, for general information or for future reference, this catalog is a must! For your free copy write, telephone, TWX or use the reader service number below.

DRENNEN-BARNES ELECTRONICS CORP.
OMEGA INSTRUMENTS DIVISION

2599 N. FAIR OAKS AVE. / ALTADENA, CALIF. 91002
TELEPHONE: (213)977-1832 / TWX: 213-499-2556

jannuary, 1965
IT IS REPORTED:

Albert J. Morris, president of Energy Systems, Inc., Palo Alto, has been elected chairman of the S.F. Council of WEMA, succeeding John S. McCullough, vice president and general manager, electron tube division, Litton Industries, San Carlos. Elected vice chairman was E. E. van Bronkhorst, vice president, Hewlett-Packard Co. Jesse R. Lien, vice president and general manager, Sylvania Electric Products, Inc., Mountain View, was named secretary-treasurer. Other directors elected from the council are Kenneth T. Larkin, director of engineering research and development, Lockheed Missiles and Space Co., Sunnyvale; Dr. Dean A. Watkins, president, Watkins-Johnson Co., Palo Alto; and Robert M. Ward, president, Uteck, Palo Alto. Dr. Wendell B. Sell, president of Packard Bell Electronics, Los Angeles, has been elected chairman of the L.A. council; and Walter J. Zable, president of Cubic Corp., San Diego, chairman of the San Diego council.

Dr. John V. N. Granger, president of Granger Associates, Palo Alto, reports highest sales in the company’s eight-year history, $5,370,209, up 28 percent over sales of $4,200,267 for 1963.

Albert T. Isaacs has been advanced to manager of tube research and development at Stewart Engineering Co., Santa Cruz.

Alan T. Waterman, Jr., Stanford University, has been elected secretary of the U.S. National Committee of Union Radio Scientifique Internationale (URSI) for a triumvirate. L. A. Manning, Stanford, has been elected editor of the same group and will work with the National Bureau of Standards in the publication “Radio Science.”

John P. Downey has been appointed manager of the newly formed 70-man data processing center of Sylvania Electronic Systems, a division of Sylvania Electric Products, Inc., Mountain View.

Dr. Ralph L. McCreary has been appointed manager of the systems division and elected a vice president of Watkins-Johnson Co., Palo Alto, assuming responsibility for the company’s advanced developments in satellite communications, reconnaissance, electronic countermeasures, and surveillance systems.

Robert J. Stahl, former manager of product planning for the western operation of Sylvania Electronic Systems, a division of Sylvania Electric Products Inc., has been appointed to the newly created position of manager of product planning at the main operation in New York.

Phillip L. Gundy has been elected executive vice president of Computer Equipment Corp. of Los Angeles; and John J. Burke and Robert M. Ward have been named to the company’s board of directors. Gundy continues as executive vice president of Technical Systems, Inc., a substantial shareholder in Computer Equipment. He is a past president of WEMA, a current director of WESCON, and was a senior vice president of Ampex Corp. before joining Technical Systems in 1963.

Advertisers Index

Alhambra National Water Co.12
Brill Electronics3
Christie Electric Corp.16
Costello & Co.9
Custom Materials, Inc.11
Dressen-Barnes (Omega Div.)13
E-H Research, Inc.2
ESL, Inc.12
General RadioCover 4
Hewlett-Packard Co.1
National Press7
Northern California Personnel10
Stanford Research Institute16
Singer Co.—Metrics Div.Cover 3
Gertsch Instruments11
Tech-Ser, Inc.11
TektronixCover 2
TWA8
Western Gold and Platinum14
MANUFACTURER/REPRESENTATIVE INDEX

ABBIEY ELECTRONICS CORP. McCarthy Assoc.
Accutec, Inc. G. S. Marshall Co.
Atech Jay Stone & Assoc.
Airborne Instruments Lab. Wright Engineering Alford Electronics
American Electronics Labs Perlmuth Electronics
Anlab, Inc. Jay Stone & Assoc.
Applied Magnetics Corp. The Thorson Co.
Astronomy Laboratory Costello & Co.
Astrodata, Inc. Moxon Electronics
Beattie-Goldman, Inc. T. Louis Snitzer Co.
Beckman/Berkeley Division M. T. Rupp Co.
Beckman/Computer Operations V. T. Rupp Co.
Behlman/Invar Electronics T. Louis Snitzer Co.
Blaw-Knox The Thorson Co.
Bryant Computer Products Costello & Co.

Cimarron Corporation Moore Engineering
Daime Corp. Moxon Electronics
Clairier Corp. Moxon Electronics
Collector Corporation Castello & Co.
College Hill Industries (form. Speidel) Perlmuth
Computer Instruments Corp. Moxon Electronics
Computer Instruments Corp. Components Sales
Computer Measurements Co. Moxon Electronics
Cook Electric Data-Store Div. Castello & Co.
Custom Materials, Inc. Jay Stone & Assoc.

Data Equipment Co. Moxon Electronics
Datamark, Inc. Moxon Electronics
Datamec Corporation Moxon Electronics
Diamond Antenna & Microwave Corp. Wright
Difun Controls, Inc. Wright Engineering
Digitronics Corp. Components Sales Calif.

Eckel Corporation White & Co.
Electronic Mechanical Research T. Louis Snitzer
Electron Products G. S. Marshall Co.
Electronic Components Div. Perlmuth Electronics
Electronic Components, Inc. Perlmuth Electronics
Electronic Products, Inc. Jay Stone & Assoc.
Electro Tech Corp. Willard, Natt & Co.
Emcor, Ingersoll Products Div. T. Louis Snitzer Co.
Eppey Laboratory, Inc. W. K. Geist Co.

FabriTek, Inc. Castello & Co.
Fairchild Scientific Products Moxon Electronics
Fairchild Semiconductor G. S. Marshall Co.
Fifth Dimension, Inc. Perlmuth Electronics
Glowlite Corp. Wadsworth-Pacific Mfg. Assoc.

Helix, Inc. The Thorson Co.
Hollis Instruments Laboratories W. K. Geist Co.
Honeywell-Decker Div. Lab Standards, Geist
Honeywell, Mpls. Enclosures W. K. Geist Co.
Hughes Instruments McCarthy Assoc.
Hylesonics Inc. The Thorson Co.
Hyperion Industries, Inc. McCarthy Assoc.
Impact-D-Graph Corp. White & Co.
Inland Motor Corp. Castello & Co.
Invac Corp. V. T. Rupp Co.

Keithley Instruments T. Louis Snitzer Co.
Kewaunee Scientific Equipment White & Co.
Kemet, Inc. G. S. Marshall Co.
Kenep, Inc. V. T. Rupp Co.
Kinetics Corporation The Thorson Co.
Kollmorgen Corp. W. K. Geist Co.
KRS Electronics V. T. Rupp Co.

Lambda Electronics Corp. Jay Stone & Landis & Gyr, Inc. Recht Assoc.
Lavoie Laboratories, Inc. McCarthy Assoc.
Lind Instruments, Inc. The Thorson Co.

Magnetic Shield Div. Perfection Mica Perlmuth
Marconi Instruments Moxon Electronics
Maury Microwave Corp. Kip Assoc.
McLeann Engineering Labs T. Louis Snitzer Co.
Meller Electronics Corp. Components Sales Calif.
Mennen-Greatbatch Electronics, Inc. Tech-Ser, Inc.
Metro Electronics, Inc. Perlmuth Electronics
Metron Instrument Co. Components Sales Calif.
Microdot, Inc. McCarthy Assoc.
Microchip Corporation Jay Stone & Assoc.
Micromics, Inc. Perlmuth Electronics
Microwave Microwaves Associates Elliott Recht Assoc.
Microwave Electronics Corp. Jay Stone & Assoc.
Millistet Inc. Components Sales Calif.
Motorola Corp. Perlmuth

Neareast Scientific Corporation White & Co.
Optimation, Inc. McCarthy Assoc.
Pac. Communications & Electronics Artwell Elec.
Pentrix Corp. Wright Engineering

George A. Philbrick Researches, Inc. Tech-Ser, Inc.
Philco Corp., SSPO Jay Stone & Assoc.
Polara Electronic Instruments T. Louis Snitzer
Potter and Brumfield Elliott Recht Assoc.
Precision Mechanisms Corp. Components Sales
Qualitron Corp. Wadsworth-Pacific Mfg. Assoc.
Quan-Tech Labs Jay Stone & Assoc.
Raytheon-Raytheon Perlmuth Electronics
Remaco Inc. Jay Stone & Assoc.
Renex Dry Glove Company, White & Co.
Rexall Electronics, Inc. Castello & Co.
Rohde & Schwarz Sales Co. W. K. Geist Co.
Rowan Controller Co. Artwell Electric
Rutherford Electronics Moxon Electronics
Ryan Recording Thermometer Co. White & Co.
Saegertown-Western Wadsworth-Pacific Assoc.
Sage Laboratories, The Thorson Co.
Sandefur Engineering Co., Inc. Tech-Ser, Inc.
Sequential Electronic Systems White & Co.
Sierra Electronic Div., Philco T. Louis Snitzer Co.
Sing & Metrics, Bertson, Ceramic Associates
Siney Corp. Perlmuth
Spectra Physics, Inc. O'Hallorass Assoc.
Sperry Microwave Company McCarthy Assoc.
Starr Engineering Corp. Perlmuth Electronics
Strazza Industries Costello & Co.
Systems Research Corp. Moxon Electronics
Tally Corp. Moxon Electronics
Telonic Industries & Eng. Tech-Ser, Inc.
Tenney Engineering, Inc. The Thorson Co.
Test Equipment Corp. Wright Engineering
Teknicorp Corp. Moxon Electronics

United States Dynamics White & Co.
Uptime Corporation Castello & Co.
Utah Research & Development Co. The Thorson Co.
Vactite, Inc. McCarthy Assoc.
Vitramon, Inc. G. S. Marshall Co.
Warren Components Wadsworth-Pacific Mfg. Assoc.
Waters Corp. White & Co.
Wayne-George Corp. Perlmuth Electronics
Weinshel Engineering, Inc. Jay Stone & Assoc.
Weldmatic Div. - Uniek Corp. Tech-Ser, Inc.
Western Microwave Labs Kip Assoc.
Willits Co. O'Hallorass Assoc.
Wyle Laboratories V. T. Rupp Co.
Zassen Technical Associates Tech-Ser, Inc.

REPESENTATIVE DIRECTORY

Artwell Electric, Inc. 1485 Bayshore Blvd., San Francisco, CA 94073

Components Sales California, Inc.
Palo Alto: 326-5317

Castelle & Company
535 Midfield Road, Palo Alto, CA 94301

Dyamic Associates
1011-D Industrial Way, Burlingame, 344-2521

Geist Co., W. K
Box 746, Cupertino 95078-253-943

Kipp Associates
90 Stadler Drive
Woodside, 851-0123

Marshall Company, G. S.
890 Warrington Road
Redwood City, 365-2000

McCarthy Associates
1011-F Industrial Way, Burlingame, 344-8901

Moxon Electronics
15-41st Avenue, San Mateo, 345-7961

O'Hallorass Associates
3921 E. Bayshore, Palo Alto: 326-4953

Perlmut Electronics
1285 Terra Bella Ave.
Mt. View, 94027-0700

Recht Associates, Elliott
175 S. San Antonio Road, Los Altos, 94028-036

Rupp Co., V. T
1182 Altos Avenue, Los Altos, 94024-1843

Snitzer Co., T. Louis
1020 Corporation Way, Palo Alto, 9408-8304

Stirke & Assoc., Jay
140 Main Street, Los Altos: 9408-1493

Tech-Ser, Inc.
800 San Antonio Rd., Palo Alto: 326-9800

The Thorson Company
2443 Ash Street, Palo Alto: 321-2414

Waltser Associates
Box 790, Menlo Park 94024-606

Wadsworth-Pacific Mfg.
Assoc., Inc.
71 Parker Avenue, Atherton: 321-3619

Willard Nett & Co.
1485 Bayshore Blvd., San Francisco, CA 94073

White & Company
788 Mayview Ave., Palo Alto: 321-3550

Wright Engineering
126-25th Ave., San Mateo: 345-3157

January, 1965
MEMBERSHIP

The following members have recently been transferred to a higher grade of membership:

Senior Member
Edward C. Wood
C. V. Weden

Following are the names of individuals who have been elected to current membership:

- E. M. Aoki
- F. A. Brown
- W. G. Buchmehn
- E. C. Cabot
- V. R. Cateman
- D. G. Cesio
- W. L. Chang
- N. C. Cooper
- K. A. Crockett
- T. J. Cronin, Jr.
- L. A. Dykes
- G. L. Eiler
- G. L. Franklin
- L. L. Frost
- W. A. Gardner
- T. H. Harden
- R. A. Harkness
- W. L. Haslam
- J. B. Haynes
- K. M. Inaloi
- J. L. Jacobs
- D. J. Johns
- K. L. Josephs
- H. J. MacDanniel
- D. S. McReynolds
- D. G. Meyer
- D. M. Meyerson
- D. W. Prince
- J. B. Rhodes
- W. H. Rowe
- A. S. Reed
- T. M. Shortal
- J. J. Stewart
- A. A. Stratford
- W. M. Suggawara
- J. D. Thomas
- G. T. Welles

book notes

SIEGMAN ON MASERS

A new textbook on masers—the solid-state electronic device for which the 1964 Nobel Prize in Physics was awarded—has been published by a young Stanford expert in the field.

Prof. Anthony E. Siegman’s book, “Microwave Solid-state Masers” (583 pp., McGraw-Hill, $18.50), already has received high praise from professional journals. A reviewer in Physics Today wrote:

“The book’s introduction of microwave solid-state masers, both as a detailed and concise reference book for the scientist. It is quite certain that this book will soon belong to every library . . . containing books on masers and paramagnetic resonance. It is worth the price and will not be out-dated for quite a long time.”

Prof. Siegman recently authored a major article on lasers—an extension of masers into the visible light frequencies of the electromagnetic spectrum—for Stanford Today, a university publication. A member of the electrical engineering department, at 33 he is the youngest full professor in the Stanford School of Engineering.

Classified Advertising

Positions Available

SR. ELECTRONICS ENGINEER
Staff Member—Instrumentation
Research Lab
Genetics Dept., Stanford Medical Center
Engineering skills desired in computer control and data acquisition, analysis and presentation. Application is to the exploration of mass spectrometry as an analytical tool for biological research, for lab purposes and possible planetary missions. Circuit design experience and versatility in background required.

General research activities of the lab include both engineering and biological objectives directed to the ultimate acquisition of fundamental data: the development of advanced instrumentation adaptable to planetary missions; the study of the physical and chemical properties of macromolecules and microorganisms that might be relevant to the general definition of life and to their characterization in an extraterrestrial environment. The focus of interest is presently on fluorimetry as a tool for functional tests for enzymes and on mass spectroscopy as a cytochemical analytical method. Emphasis is placed on the use of a computer for data analysis and instrument control with the ultimate objective of an automated research laboratory.

Requirements: Adv. Degree (MS,EE,Ph.D.) and Exp. Salary: Open. Contact: Dr. Elliott Levinthal; above address.

Consultants

RO ASSOCIATES
Incorporated
Dr. Robert H. Okada
Consultants in
Solid State Circuits, Systems
917 Terminal Way, San Carlos, Calif. 593-7570

Equipment for Sale

Edison Voicewriter model VPC 7342 including receiver model 77612, all attachments, supply of dictating, $75 or best offer takes. Excellent condition. To inspect, visit Section Office or call Mrs. Jean Helmke, 327-6622.

Classified Advertising Rates

Members: $15 for 1st col.-inch, $10 for 2nd, $5 for each additional. Non-members: $30 for 1st col.-inch, $15 for 2nd, $10 for each additional. 10% frequency discount for 10 consecutive ads. None to exceed total of 4 col.-inches. Special type or logos not carried. Non-commissionable. Deadline 20th of month.

section inputs

CHANGE OF ADDRESS

If you plan to change your address, notify headquarters and the section office at least three weeks in advance of the effective date.
This Gertsch bridge measures both in-phase and quadrature ratios of 3- and 4-terminal networks to an accuracy of 0.01% (10ppm). Voltage ratios are read from the RatioTran® dials as rectangular coordinates (R+iX), or phase angle between signal and reference may be read directly in degrees.

Broad-band coverage—Instrument makes measurements at all frequencies from 350 to 5100 cps without using plug-in filters or networks. Completely self-contained, the CRB-8 requires no external calibration sources or detector.

Continuously tuned null amplifier drives the detector circuit so that minute values of off-null voltage can be detected without harmonics or noise. Extremely high signal input impedance minimizes loading of the device under test. Except for five tubes, instrument is designed with all solid state circuitry.

Other complex ratio bridges in the Gertsch line, available in both cabinet and rack-mounted types, include compact, fully transistorized units...militarized units designed to withstand severe environments, and a complex ratio bridge which makes precision voltage and phase comparisons automatically, in less than 10 seconds.

For complete details and applications assistance, contact your nearest Gertsch representative or the address below, requesting Bulletin CRB.
... all from the 1217-C Unit Pulse Generator

Reliable, small, inexpensive, and versatile sum up the features of this new, improved Pulse Generator... one of the best pulse generator values available today.

SPECIFICATIONS

PRF Range: 2.5c/s to 1.2 Mc/s internally generated; dc to 2.2 Mc/s with external drive. Single pulses can also be produced with the accessory 1217-P2 Single-Pulse Trigger, a battery-operated switching device, $25.00.

Duration Range: 100 nsec to 1 sec in seven decade ranges.

Output: Positive and negative 40-ma pulses available simultaneously (40 volts into a 1-kilohm load).

Rise and fall times less than 10 nsec. Overshoot and noise less than 10% of amplitude; ramp-off is less than 1%; jitter is less than 0.01% with regulated power supply.

Sync Pulse: Positive and negative 8-volt pulse of 150-nsec duration.

Delayed Sync Pulse: A 5-volt, 100-nsec negative-going pulse coincident with late edge of main pulse followed by a positive going, 5-volt, 150-nsec reset pulse. Useful for triggering another 1217 Pulse Generator to produce composite pulses.

Price: $275 in U.S.A.

Recommended Type 1201-B
Unit Regulated Power Supply... $95

Write for Complete Information