"Edison after the Electric Light" Debuts

"Edison after the Electric Light: The Challenge of Success" is a new traveling exhibit that looks at Thomas Edison's later years. In 1887, at the age of forty, Edison moved into a grand new laboratory in West Orange, New Jersey—a place in which you could invent anything that came into your head." Here he intended to concentrate his energies, as he had with such extraordinary success a decade earlier at nearby Menlo Park. In the considerably smaller Menlo Park laboratory, over a four-year period, he had earned the title "Wizard" for his success in inventing hundreds of devices, including the phonograph, a carbon-resistance telephone transmitter, an improved dynamo, and a practical incandescent lamp. He now planned to do much more.

But he also had a new wife, a new home, and a new winter retreat in Florida. He was famous, and he was older. All of these factors would generate competition for his time. Furthermore, the sheer size of West Orange would make him more of a manager. His special gift to Menlo Park had been a combination of inventive genius, dogged determination, and a special ability to get along with other men—to work with them, to relax with them, and thus to inspire them. It would be increasingly difficult for him to do this at the new facility.

Over the years, Edison did spend substantial periods of creative time in the West Orange laboratory. But the new elements in his life had their impact, and he did not achieve the productivity he had anticipated. Instead—perhaps to his surprise—he discovered that he could adjust his goals to include the new activities, and that they were themselves a source of enjoyment. And the periods he could spend in the laboratory became all the more precious.

"Edison after the Electric Light" tells this story through the photographic record left by Edison. Photography was maturing as Edison was becoming a world figure, and Edison understood the power of the press. Thousands of photographs were taken of him and his activities. The images included in this exhibit were chosen from a collection recently donated to the Smithsonian Institution by ETL Testing Laboratories, Inc., and from the collection at the Edison National Historic Site, West Orange, New Jersey.

Made possible by a grant from ETL, "Edison after the Electric Light" was developed by curators Bernard S. Finn, National Museum of American History, Smithsonian Institution, and Joyce E. Bedi, IEEE Center for the History of Electrical Engineering. After a preview at ETL's 90th anniversary celebration at the Waldorf-Astoria Hotel in New York City, the exhibit began its two-year tour of museums across the United States. It can be seen at Discovery World in Milwaukee, Wisconsin, from 7 March - 19 April 1987 and then at the National Atomic Museum, Albuquerque, New Mexico, from 21 May - 21 June. "Edison after the Electric Light: The Challenge of Success" is being circulated by the Association of Science-Technology Centers; inquiries should be directed to Wendy Pollock, Traveling Exhibition Service, Association of Science-Technology Centers, 1413 K Street, NW, Tenth Floor, Washington, DC 20005 (202-371-1171).


**Friends!**

The Friends of the IEEE Center for the History of Electrical Engineering is off to a good start in its second year. Nearly 200 of you have become Friends already, and we sincerely thank you for your support. Also, the IEEE Foundation has appointed the Friends of the IEEE Center for the History of Electrical Engineering Committee to administer the Friends Fund, which supports special Center projects. The officers for 1986-87 are John D. Doyle, Chairman; Emerson Pugh, Vice Chairman; Harold Chestnut, Financial Officer; and Erwin Tomash, Secretary.

As of 1 February, the roster of Friends for 1987 is as follows:

- Michael Alstott
- Frederick J. Altman
- Warren R. Anderson
- Robert E. Anken
- Henry J. Antion
- John Awood
- Werner F. Auether
- Renato J. Bacolo
- John J. Banaszak, Sr.
- Laurence Bardehler
- Frank F. Bateman
- Dwight C. Baum
- Francis H. Beekhuis
- James E. Brittan
- Stephen C. Brown
- John M. Brumbaugh
- Bernard B. Burkhard
- Edward C. Callahan
- Francis W. Campbell
- W. Kenneth Cavender, Jr.
- Joseph B. Chambers
- William C. Cherry
- Harold Chestnut
- Harold Christen
- Richard C. Clarke
- Arnold A. Cohen
- Robert E. Collins
- William L. Conner
- Perry L. Correll, Jr.
- Dominocostantino
- Elmer C. Culver
- Lloyd H. Daniels
- Henry B.D. Davis
- Martin J. Davis
- Frank Di Iorio
- George K. Durley
- Perry R. Dyking
- Gene L. Edwards
- Adolph C. Evers
- W.W. Elder
- William J. Elsasser
- Brownell R. Ellis
- Donald H. Erickson
- Lyle D. Felsen
- Arnold D. Finley
- Leonard W. Pinello
- Joseph S. Forti
- Alton E. Foster
- Alfred B. Friedman
- Edward A. Fuchs
- E.K. Gannon
- William J. Gaiermann, Jr.
- John W. Gels
- Edward W. Gilye
- Arthur Goldsmith
- Loo Goo
- Paul R. Godby
- Russel J. Gresbach
- Howard B. Hamilton
- J. Scott Hamilton
- Carl Hammer
- Manno N. Harder
- C.W. Hargens III
- Harold R. Hackendorf
- Frank J. Hallerman
- Edward W. Haldol
- Howard M. Haas
- G. Victor Hetherington
- Akira Higuchi
- Keith N. Hoad
- Grace M. Hopper
- Takahiro Horikawa
- Alfred Horsfield
- Frederick B. Hulse
- Edward J. Huber
- Charles E. Hugus
- Lawrence J. Hesley
- Donald R. Jenkins
- Reese J. Jenkins
- Ronald V. Jenkins
- Sheldon C. Jenkins
- Amos E. Joel, Jr.
- Evelyn E. Johnson
- Robert B. Jones, Jr.
- Horatio M. Joseph
- Frederick Knapfel
- Michael F. Kelsey
- Richard H. Kimball
- Nicholas Konstantinou
- Norman B. Klein
- J. Wesley Letsch
- Earl R. Leath
- S.B. Lent
- William G. Lange
- Arthur L. Vought
- Andrew Malcolm
- Thomas E. Marburger
- Tula A. Marciniak
- Earl D. Martin
- John W. McGinley
- John B. Mahoney
- V. Bruce Merritt
- Stanley S. Meyers
- Harold Meyers
- Robert H. Miller
- Stephen B. Morehouse
- Samuel R. Morrow
- Yuri N. Mott
- Milton S. Murphy
- Paul Naha
- R.J. Nield
- Arthur E. Newton
- Clark Nichols
- Stephen S. Norman
- Karl S. Packard
- Harold Carley
- John D. Pethe
- Robert C. Probasco
- George W. Pyne
- J. Clifford Bailey
- Robert N. Riedy
- William H. Roadruck
- George D. Robertson
- A.E. Rodrigues
- Walter E. Rogers
- George E. Ross
- John J. Rowe
- Milton J. Rupert
- Frederick A. Russell
- William A. Sacrey
- Henry G. Schick
- Joseph A. Schindler
- Theodore W. Schroeder
- Edward T. Schuchter
- Samuel Senisie
- David B. Smith
- Malcolm H. Smith
- T. Louis Sunseri
- William P. Snyder
- Leon H. Sperry
- Martin Springer
- Frank R. Stonier
- Henry Susman
- Warren L. Sykes
- Yuichi Takashi
- John W. Teller
- Joseph A. Thompson
- Ben H. Tonge
- Gerald T. Vermilye
- Walter W. Turner
- Herbert B. Vorrink
- William H. Ward
- S. Reid Warren
- Charles H. Weaver
- Ernst Weber
- Stewart E. Wieland
- John D. Wightman
- James A. Williams
- Raymond H. Williamson
- David S. Williams
- Harold W. Wett
- Joseph H. Wujek
- Edward J. Zirka

We hope that we will be able to welcome many more of you as Friends of the IEEE Center for the History of Electrical Engineering in 1987.

---

**Eta Kappa Nu Archives**

Eta Kappa Nu, the honorary electrical engineering society, marked the 50th anniversary of its Outstanding Young Electrical Engineer Award last year with the publication of a book on the history of the award. The book’s editor was Donald Chistiansen, editor of IEEE Spectrum and former chairman of the society’s Award Committee, who recently transferred his files on the award and other Eta Kappa Nu activities to the IEEE Archives. The files, some of which came from James A. Darcy, Chairman of the 50th Anniversary Committee, Larry Dunn and Brentfield Sheffield, members and former chairman of the Award Committee, and Paul R. Hudson, archivist of Eta Kappa Nu, cover in detail part of the organization’s recent history.

Founded on the campus of the University of Illinois in 1890 by Maurice L. Cary, an electrical engineering student, Eta Kappa Nu was originally intended to be a secret society or a professional union for all electrical engineering students. Crier and nine charter members promptly dropped these ideas, though, and established the society as a national fraternity with chapters on college campuses. Membership in the national fraternity was open to electrical engineering students, based on scholarship, character, and personality. The founding group decided on the Wheatstone bridge as its symbol (reflecting scholarship, character, and personality—the three “known” legs of the bridge—led to “success”).

In 1936, Eta Kappa Nu began publishing Electrical Field, which was mostly concerned with helping its readers find employment. The 1939 issue described, more broadly-based Eta Kappa Nu magazine, succeeded Electrical Field in 1939. In 1947, the society formally adopted the scholarship requirements for membership (upper fourth of junior electrical engineering class at upper third of senior electrical engineering class that remain in effect today).

Eta Kappa Nu established the Outstanding Young Electrical Engineer Award in 1936 at the suggestion of Roger I. Wilkinson, a member of Bell Laboratories and later an IEEE Fellow. Those eligible must have been “graduated not more than ten years from a specified baccalaureate program” and be under 35. He or she is evaluated on the basis of career achievement, service to the profession, scholarship, leadership, and other professional accomplishments.

Some prominent past winners have been:
- C. Guy Sutts (1957), who went on to become director of the General Electric Research Laboratory; Cleo Brunetti (1941), an expert in circuit theory; John Piez (1942), radar and telecommunications pioneer; and Kenneth H. Olsen (1960), the founder of Digital Equipment Corporation. Among those who have received honorable mentions are Philip T. Farnsworth (1937), the television pioneer; Donald G. Feik (1940), now Executive Director Emeritus of the IEEE; Jerome Wiesner (1947), who later became president of MIT; and Jay W. Forrester (1948), an inventor of the magnetic-core memory computer. The name of each year’s Outstanding Young Electrical Engineer is inscribed on a large brass bowl, which is under the curation of the IEEE Center for the History of Electrical Engineering.

The material transferred to the IEEE archives focuses on the granting of this award. Included are correspondence, programs, and other material relating to the award banquet and citations in the 1960s and mid-1970s; transcripts and photographs for the 50th anniversary celebration of the award; material on the selection of the Outstanding Young Electrical Engineer in the 1960s and early 1970s; and files regarding the general business of the Award Organization Committee.

Edison Centennial Symposium
On Thanksgiving Day 1887, Thomas Alva Edison officially opened his large laboratory and manufacturing complex at West Orange, New Jersey. Today, on a much larger scale, the work began at nearby Menlo Park and started several new ventures. The Menlo Park laboratory developed at the West Orange lab, now part of the Edison National Historic Site, included an improved phonograph, the alkaline storage battery, and motion pictures. Two symposia are among the many events scheduled to mark the centennial of the laboratory.

The first of these, entitled "The Wizard of Menlo Park: Thomas Alva Edison and a New Century," will be held at the Eagleton Institute, Woodburn Building, Douglass Campus, Rutgers, The State University of New Jersey, on four successive Sundays, beginning 1 March. The speakers will be J. March, John T. Cunningham and Wyn Wachhorst, "Edison: The Symbol and the Myth"; 8 March, Bernard S. Finn and Paul Israel, "Networks of Telegraph Communication"; 15 March, Louise Drus and Edward Pernick, "Visitors and Reflections of American Society (through the Photograph and Motion Picture);" 22 March, Robert Fink and Leonard Reich, "The Invention of Invention."

The program is sponsored by the Middlesex County Cultural and Heritage Commission, the Edison National Historic Site, and the Middlesex County Board of Chosen Freeholders. In cooperation with Edison's West Orange Laboratory Centennial Committee.

The second symposium will be held at the Edison National Historic Site on Saturday, 25 April 1887, beginning at 3 a.m. The speakers will be W. Bernard Carlson, Andrea Millard, and Mary Ann Higby. Their papers, based on recent research in the extensive Edison archives, will focus on the technical development of Edison's industrial research at West Orange. The moderator will be Darwin Stapleton. Since seating is limited, those interested in attending should contact the Edison National Historic Site, Main Street at Lakeland, West Orange, N.J., 07052, 201-736-0550.

For details on either symposium, contact Edward Pernick at the above address.

MIT Museum Documents Subminiature Vacuum Tube The MIT Museum has recently produced, with funding from the Raytheon Company, a fifteen-minute videotape entitled The Subminiature Vacuum Tube: The Cycle of Technology. The subminiature tube was a major breakthrough in electronics technology, affecting many of the devices in 20th-century science and industry. Among other applications, it was used in hearing aids and in the development of the proximity fuse, one of the most important military inventions of World War II. The videotape, which is meant for a general audience, uses the development of the subminiature tube to demonstrate the process of technological innovation in electronics. It traces the development of radio and of vacuum tubes from the discovery of electromagnetic waves in the mid-19th century, and emphasizes the way that unexpected applications are found for existing technologies. The videotape is available free of charge to nonprofit educational organizations.

Production of the subminiature vacuum tube ceased in February 1986 at Raytheon in Massachusetts. As part of the video project the MIT Museum filled the entire tube manufacturing process before this last major assembly line for the tubes closed down. The approximately 25 hours of film are now in the collection of the MIT Museum. Those interested in this archival footage or who wish to obtain a copy of The Subminiature Vacuum Tube: The Cycle of Technology should contact Warren A. Scarmato, Director, MIT Museum, 205 Massachusetts Avenue, Cambridge, MA 02139 (617-253-4444).

MIT Museum Documents Subminiature Vacuum Tube The Cycle of Technology. The subminiature tube was a major breakthrough in electronics technology, affecting many of the devices in 20th-century science and industry. Among other applications, it was used in hearing aids and in the development of the proximity fuse, one of the most important military inventions of World War II. The videotape, which is meant for a general audience, uses the development of the subminiature tube to demonstrate the process of technological innovation in electronics. It traces the development of radio and of vacuum tubes from the discovery of electromagnetic waves in the mid-19th century, and emphasizes the way that unexpected applications are found for existing technologies. The videotape is available free of charge to nonprofit educational organizations.

Production of the subminiature vacuum tube ceased in February 1986 at Raytheon in Massachusetts. As part of the video project the MIT Museum filled the entire tube manufacturing process before this last major assembly line for the tubes closed down. The approximately 25 hours of film are now in the collection of the MIT Museum. Those interested in this archival footage or who wish to obtain a copy of The Subminiature Vacuum Tube: The Cycle of Technology should contact Warren A. Scarmato, Director, MIT Museum, 205 Massachusetts Avenue, Cambridge, MA 02139 (617-253-4444).

One of the earliest uses for subminiature vacuum tubes was in tank-turrets in World War II.

The Newsletter's "Publications" section was prepared with the assistance of Thomas J. Higgins of the University of Wisconsin.

Books

In his book, Benger asks, "why do we find ourselves living in an information society? How did we come to possess the technology of communication and information come to play an increasingly important role in advanced industrial countries relative to the roles of matter and energy? And why is this change recent— or is it? Information—processing technology is the focus of Benger's book.

For the "control revolution" began in the 1950s with the introduction of photography and telegraphy, and continue through the present computer age. He cites the demand for new technologies, made by our continually changing society, as well as by societies of the past, as the key ingredient in the revolution. In tracing the history of technological advancement, Benger devotes serious how the development of electrical and electronics technologies, such as magnetic power processing, telegraphy, telephony, motion pictures, magnetic tape recording, radio, television, and electronic computers.

James R. Benger is an Associate Professor at the Department of Technology and Society at the University of California, San Francisco, California.

Information of History of Communications Group The Economic History of Communications Group was formed in 1984 to serve as a forum for the presentation of original research on the history of communication technologies. To date, the group has met at meetings of the Economic History Association and at the annual meetings of the Business History Conference.

The group, which now has a 100-person mailing list, invites interested persons to join and to also suggest a name for the group. Call for papers for a session devoted to communication history at the next SHOT meeting will be issued shortly. For more information, contact Louis Bollo or Pamela Lurton, College of Communication, Boston University, 640 Commawealth Avenue, Boston, MA 02215.


Margaret Graham's book examines technical innovation as a management problem within the complex workings of a large corporate R&D organization. The book explores the theme with a case study of RCA's fifteen-year research and development effort to produce a product called Videodisc. The Videodisc transfers from laboratory to development group to the market and finally to withdraw from the marketplace are all discussed. Graham then explains how the company's history, structure, technical capability, and competition affected the development of the Videodisc. This book is not only about RCA Videodisc, but an inside look at how a modern corporation deals with the complex process of science-based innovation.

Margaret B.W. Graham is an Associate Professor at the School of Management at the University of Southern California, Los Angeles.


This volume, originally published in Dutch in 1988, is the first of a projected three volume set and is part of the Dutch electrical industry's history tracing the founding of the Philips Company in 1891. The book discusses the growth of the company from a scientific, as well as an industrial perspective. Dr. Haering shows how the later success of the company was dependent upon its fortunate "combination of technical, commercial, and financial expertise." This volume also describes the Philips family's early contact with banking and gas lighting enterprises, which later led to its technological and marketing success in the manufacturing sector.

A. Haering is with the Philips Company, Eindhoven, The Netherlands.


Articles


Aronson, "What Our Organization Can Learn from the United States (at the American R&D Pioneers Conference)." Research Management, 19; No. 6 (1986), 6-8.


Brennbraum, Ronda. "Nicola Tesla and His Work in Radio," Canadian Research, 19; No. 7 (Sept. 1986), 82, 84, 86.


IIEEE/SHOT Prize in Electrical History

The Society for the History of Technology (SHOT) announced the establishment of the IIEEE Life Members' Prize in Electrical History. The Prize will be administered by SHOT, was established by the History Committee of the IEEE and is supported by the IEEE Life Member Fund. A cash prize of $500 and a certificate will be awarded annually to the best paper in electrical history published in the previous year.

Any historical paper published in a learned journal or magazine or article may be eligible for the art or engineering aspects of electromechanics and its practitioners, electromechanics encompasses power electronics, telecommunications, and computer science. The cash prize and the certificate will be shared among all joint authors, as well as the history of dielectric-fiber surface waveguides and sources and detectors for fiber optics.

Special Issues

IIEEE Proceedings

Vol. 133, Part A, No. 3 (June 1986). A special issue on the special twenty years of optical communications. Includes papers on the development of fiber optics at the Bell Labs, as well as the history of dielectric-fiber surface waveguides and sources and detectors for fiber optics.

Silicon Valley Archives

The directors of the Stanford/Silicon Valley Project have issued descriptions of the first archives and manuscripts that have collected relating to the history of electronics in Silicon Valley. The Project, which was launched last year by the University Libraries and the Science programs at Stanford (see Newsletter No. 11, Spring 1986), has obtained these three collections in the areas of microwave and accelerator technology, robotics, and the computer workplace.

The largest collection was received from Edward L. Ginzton, co-founder of Varian Associates and a pioneer in microwave tube technology and linear accelerator development. (The Center for the History of Electrical Engineering has an oral history interview with Dr. Ginzton, conducted by A. Micah McIlhenny in 1984. See Newsletter No. 8, Spring 1986.) Spanning the years 1935 to 1985, the collection documents Ginzton’s prolific career at Varian Associates and Stanford’s Microwave Laboratory. The collection includes "correspondence and notes regarding the invention and the development of medical linear accelerators, as well as materials following the development of the Stanford linear accelerator from the relatively small Mark I machine housed in the physics department in 1950 to proposals to Congress for the construction of the 2-mile-long linear accelerator at SLAC [Stanford Linear Accelerator Center]. Also featured are materials relating to the Varian brothers and radiation and laser conducted by Varian Associates as well as writings and correspondence and other material written by Dr. Ginzton as a professor, scientist, and administrator at Stanford.

The Stanford/Silicon Valley Project also received the papers of Charles A. Rosen, who headed the Artificial Intelligence Laboratory at the Stanford Research Institute for many years. The first such laboratory on the West Coast, it was especially well known for its work in robotics, which gained public notice when Shakey the Robot was featured in Life magazine. The collection consists of correspondence, contracts, proposals, reports, notes, and memoranda relating to the ARC [Augmentation Research Center] Lab at SRI from around 1960 to 1980. Of special interest are proposals to ARPA [Advanced Research Projects Administration], relating to "intelligent automata," proposals which led eventually to the development of Shakey and numerous other contributions to the history of robotics and artificial intelligence. Numerous technical reports, conference notes, travel write-ups, and other documentation are also included as are files on Mr. Rosen’s own company, Machine Intelligence.

The collection include the three collections the doctorate of Douglas C. Engelbart, a leader in the development of the computer workplace. The inventor of the computer input device known as a “mouse,” Engelbart founded the Augmentation Research Center at the Stanford Research Institute in 1962 and directed it in several years thereafter. Spanning the years 1953-1967, the Engelbart papers include correspondence, notes, proposals, technical reports, and numerous ‘thinkpieces’ which preceded the creation of the Augmentation Research Center. Files relating to projects sponsored by the Air Force Scientific Research, the Department of Defense, the Department of Defense, NASA, and other agencies are also present, as are materials relating to the [Institute of Radio Engineers] Professional Group on Electronic Computers which, from the early 1950s, was one of the many organizations devoted solely to computer technology. Engelbart’s early work on the computer mouse, which is used as much as his later work on topics such as digital simulation and the development of [a] prototype of his Augmented Knowledge Workshops.

For more information on these collections and the Stanford/Silicon Valley Project contact Dr. Henry Lowood, Department of Special Collections, Stanford University Libraries, Stanford, CA 94305 (415-497-4015).

The Newsletter of the Center for the History of Electrical Engineering is sent three times a year free of charge to engineers, historians, and others with an interest in the history of electrical science and technology. If you wish to be certain of receiving later issues, please take the time to fill out the form below and stamp it to the Center (if you have not yet done so).

Name
Address
Zip/Postal Code
IEEE Membership No. (if applicable)
Please send information on becoming a Friend of the Center.
EXHIBITIONS AND MUSEUMS

“From Inventor to Scientist: Elihu Thomson, 1885-1910”

An 1892 cartoonist caricatured Edison (left) and Thomson at the time of the formation of GE, placing the inventors’ heads atop their respective dynamos. From the Center’s exhibit, “From Inventor to Scientist.”

“From Inventor to Scientist: Elihu Thomson, 1885-1910” opened at the Elihu Thomson Administration Building, Swampscott, Massachusetts, on 16 December. The exhibit, which was produced by the IEEE Center for the History of Electrical Engineering, examines the years during which Thomson, one of Edison’s chief competitors, made the transition from professional inventor to professional scientist.

Thomson, born in England in 1853, immigrated to Philadelphia with his family in 1858. He attended Central High School there and, after his graduation in 1870, spent a decade teaching science at Central and experimenting and publishing papers with his colleague, Edwin Houston. In 1880, Thomson resigned from Central High in order to develop his and Houston’s arc-lighting system. The American Electric Company was founded that year, in New Britain, Connecticut, to manufacture and sell the system. Three years later, American Electric was reorganized as the Thomson-Houston Electric Company and moved to Lynn, Massachusetts. In 1892, Thomson-Houston merged with Edison General Electric to form the General Electric Company.

When Elihu Thomson came to Massachusetts as Thomson-Houston’s chief inventor, his life changed in a number of ways. He married in 1884 and began to raise a family. He developed a number of his inventions into commercial successes. He became one of the world’s most respected electrical engineers. But, as the field and the company—especially after the 1892 merger—both grew in size and complexity, Thomson found it increasingly difficult to turn his ideas into merchandise on his own. Instead, he turned to more fundamental research, such as his investigation of X-rays, leaving the development of specific products to the company engineers.

The exhibit combines photographs, archival material, and artifacts to illustrate this period in Thomson’s life. Featured in the show is a bronze replica of the first Edison Medal, awarded by the American Institute of Electrical Engineers to Thomson in 1909 for his “meritorious achievement in electrical science, engineering and arts, as exemplified in his contributions thereto during the past 30 years.” This bronze replica, which was cast at the same time as the gold medal presented to Thomson, was donated to the IEEE by Stephen B. Morehouse, IEEE Life Fellow.

Participants in the exhibit opening program included Sylvia Belkin, Chairman, Swampscott Historical Commission; J. Christopher Callahan, Chairman, Swampscott Board of Selectmen; W. Bernard Carlson, Assistant Professor of History, University of Virginia, and 1980-81 IEEE History Fellow; Eric Herz, IEEE Executive Director and General Manager; and Ronald Kline, Director, IEEE Center for the History of Electrical Engineering. The keynote address, “Elihu Thomson: Citizen of Swampscott,” was delivered by Nathan Cohn, 1982 IEEE Edison Medalist. A reception in the Elihu Thomson Administration Building, which is Thomson’s former home, was hosted by the Swampscott Historical Commission and the Swampscott Board of Selectmen.

“From Inventor to Scientist: Elihu Thomson, 1885-1910,” can be seen until 1 July 1987. For more information, contact the Center for the History of Electrical Engineering.