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ABSTRACT
This paper examines the average page quality over time of
pages downloaded during a web crawl of 328 million unique
pages. We use the connectivity-based metric PageRank to
measure the quality of a page. We show that traversing the
web graph in breadth-first search order is a good crawling
strategy, as it tends to discover high-quality pages early on
in the crawl.
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1. INTRODUCTION
According to a study released in October 2000, the di-

rectly accessible “surface web” consists of about 2.5 billion
pages, while the “deep web” (dynamically generated web
pages) consists of about 550 billion pages, 95% of which are
publicly accessible [9].
By comparison, the Google index released in June 2000

contained 560 million full-text-indexed pages [5]. In other
words, Google — which, according to a recent measure-
ment [6], has the greatest coverage of all search engines —
covers only about 0.1% of the publicly accessible web, and
the other major search engines do even worse.
Increasing the coverage of existing search engines by three

orders of magnitude would pose a number of technical chal-
lenges, both with respect to their ability to discover, down-
load, and index web pages, as well as their ability to serve
queries against an index of that size. (For query engines
based on inverted lists, the cost of serving a query is linear
to the size of the index.) Therefore, search engines should
attempt to download the best pages and include (only) them
in their index.
Cho, Garcia-Molina, and Page [4] suggested using connec-

tivity-based document quality metrics to direct a crawler to-
wards high-quality pages. They performed a series of crawls
over 179,000 pages in the stanford.edu domain and used
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different ordering metrics — breadth-first, backlink count,
PageRank [2], and random — to direct the different crawls.
Under the breath-first ordering, pages are crawled in the or-
der they are discovered. Under the backlink ordering, the
pages with the highest number of known links to them are
crawled first. Under the PageRank ordering, pages with the
highest PageRank (a page quality metric described below)
are crawled first. Under the random ordering, the crawler
selects the next page to download at random from the set
of uncrawled pages. (For repeatability, these crawls were
“virtual”; that is, they were performed over a cached copy
of these 179,000 pages.) Cho et al. evaluated the effective-
ness of each ordering metric by examining how fast it led
the crawler to all the “hot” pages. In this context, a “hot”
page is a page with either a high number of links point-
ing to it, or a page with a high PageRank. They found
that using the PageRank metric to direct a crawler works
extremely well. However, they also discovered that perform-
ing the crawl in breadth-first order works almost as well, in
particular if “hot” pages are defined to be pages with high
PageRank.
This paper extends the results of Cho et al. regarding the

effectiveness of crawling in breadth-first search order, using
a much larger and more diverse data set. While Cho’s work
was based on a crawl of 179,000 pages from the stanford.edu
domain, we performed a crawl of 328 million pages over the
entire web, covering more than 7 million distinct hosts. We
use connectivity-based page quality metrics, namely Brin
and Page’s PageRank and variations of it, to measure the
quality of downloaded pages over the life of the crawl.
We find that not only does breadth-first search download

the hot pages first, but also that the average quality of the
pages decreased over the duration of the crawl. We also
suggest that our crawler’s modifications to strict breadth-
first search — made to increase the overall download rate
and to avoid overloading any given web server — enhance
its likeliness of retrieving important pages first.
The remainder of this paper is structured as follows: Sec-

tion 2 reviews the PageRank metric we used to evaluate
the effectiveness of crawling in breadth-first search order.
Section 3 describes the tools we used to conduct our exper-
iments. Section 4 describes the experiments we performed,
and the results we obtained. Finally, section 5 offers con-
cluding remarks.

2. PAGERANK
There are many conceivable metrics for judging the qual-

ity of a web page: by analyzing its content, by measuring
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its popularity (that is, how often it is viewed), or by exam-
ining its connectivity (that is, by determining which other
pages link to this page, and vice versa). Metrics based on
connectivity have the advantages that they do not require
information that is not easily accessible (such as page pop-
ularity data), and that they are easy to compute, so they
scale well to even very large page collections. They also
require retrieving only the links on each page, not the full
page contents. Storing the full page contents requires sev-
eral kilobytes per page, one to two orders of magnitude more
than just storing the links.
PageRank is the connectivity-based page quality measure

suggested by Brin and Page [2]. It is a static measure; it is
designed to rank pages in the absence of any queries. That
is, PageRank computes the “global worth” of each page.
Intuitively, the PageRank measure of a page is similar to its
in-degree, which is a possible measure of the importance of
a page. The PageRank of a page is high if many pages with
a high PageRank contain links to it, and a page containing
few outgoing links contributes more weight to the pages it
links to than a page containing many outgoing links. The
PageRank of a page is expressed mathematically as follows.
Suppose there are T total pages on the web. We choose
a parameter d (explained below) such that 0 < d < 1; a
typical value of d might lie in the range 0.1 < d < 0.15.
Let pages p1, p2, . . . , pk link to page p. Let R(pi) be the
PageRank of pi and C(pi) be the number of links out of pi.
Then the PageRank R(p) of page p is defined to satisfy:

R(p) =
d

T
+ (1− d)

kX

i=1

R(pi)

C(pi)

This equation defines R(p) uniquely, modulo a constant scal-
ing factor. If we scale R(p) so that the PageRanks of all
pages sum to 1, R(p) can be thought of as a probability
distribution over pages.
The PageRank distribution has a simple interpretation in

terms of a random walk. Imagine a web surfer who wanders
the web. If the surfer visits page p, the random walk is in
state p. At each step, the web surfer either jumps to a page
on the web chosen uniformly at random, or the web surfer
follows a link chosen uniformly at random from those on
the current page. The former occurs with probability d, the
latter with probability 1 − d. The equilibrium probability
that such a surfer is at page p is simply R(p). An alternative
way to say this is that the average fraction of the steps that
a walk spends at page p is R(p) over sufficiently long walks.
This means that pages with high PageRank are more likely
to be visited than pages with low PageRank.
In our experiments, we set d = 1

7
= 0.14. We also modi-

fied PageRank slightly so that pages with no outgoing links
contribute their weight equally to all pages. That is, the
random surfer is equally likely to jump to any page from
a page with no outgoing links. We ran experiments using
both the original PageRank algorithm, which does not dis-
tinguish between links to pages on the same versus different
hosts, and a variant of PageRank which only considers links
to different hosts.

3. TOOLS
We used two tools in conducting this research: Mercator

and the Connectivity Server 2, both developed at our lab.
We used Mercator to crawl the web, and the Connectivity

Server 2 to provide fast access to the link information down-
loaded from the crawl.
Mercator is an extensible, multithreaded, high-perform-

ance web crawler [7, 10]. It is written in Java and is highly
configurable. Its default download strategy is to perform
a breadth-first search of the web, with the following three
modifications:

1. It downloads multiple pages (typically 500) in parallel.
This modification allows us to download about 10 mil-
lion pages a day; without it, we would download well
under 100,000 pages per day.

2. Only a single HTTP connection is opened to any given
web server at any given time. This modification is
necessary due to the prevalence of relative URLs on the
web (about 80% of the links on an average web page
refer to the same host), which leads to a high degree
of host locality in the crawler’s download queue. If
we were to download many pages from the same host
in parallel, we would overload or even crash that web
server.

3. If it took t seconds to download a document from a
given web server, then Mercator will wait for 10t sec-
onds before contacting that web server again. This
modification is not strictly necessary, but it further
eases the load our crawler places on individual servers
on the web. We found that this policy reduces the rate
of complaints we receive while crawling.

For the experiments described below, we configured Mer-
cator to extract all the links from each downloaded page
and save them to disk; for disk space reasons, we did not
retain the pages themselves. We conducted a crawl that at-
tempted to download 532 million pages over the course of 58
days (which we refer to as days 1 to 58 throughout the pa-
per). Of all those download attempts, 328 million returned
valid, unique HTML pages; the others resulted in TCP- and
DNS-errors, non-200 HTTP return codes, non-HTML doc-
uments, or duplicates. Mercator’s download rate decreased
over the course of the crawl, due to increasing access times
to one of its disk-based data structures that keeps track of
which URLs have already been seen. The median download
day was 22; the mean download day was 24.5.
The extracted links data was then loaded into the Connec-

tivity Server 2 (CS2) [11], a database for URLs and links.
A build of CS2 takes a web crawl as input and creates a
database representation of the web graph induced by the
pages in the crawl. A CS2 database consists of all URLs that
were crawled, extended with all URLs referenced at least
five times by the crawled pages. (Incorporating uncrawled
URLs with multiple links pointing to them ensured that we
did not ignore any popular URLs. Setting the threshold at
five incoming links reduced the set of uncrawled URLs by
over 90%, which enabled us to fit the database within the 16
GB of RAM available to us.) The CS2 database also con-
tains all links among those URLs and host information for
each URL. It maps each URL to all of its outgoing and its
incoming links. It is possible to get all the incoming links
for a given URL, or just the links from different hosts.
CS2 stores links in both directions in, on average, 2.4

bytes per link (as compared to 8 bytes per link in the orig-
inal connectivity server (CS1) described in [1]). Like CS1,
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Figure 1: Average PageRank score by day of crawl

CS2 is designed to give high-performance access when run
on a machine with enough RAM to store the database in
memory. On the 667 MHz Compaq AlphaServer ES40 with
16 GB of RAM used in our experiments, it takes 70-80 ms
to convert a URL into an internal id or vice versa, and 0.1
ms/link to retrieve each incoming or outgoing link as an in-
ternal id. The database for our crawl of 328 million pages
contained 351 million URLs and 6.1 billion links. Therefore,
one iteration of PageRank ran in about 15 minutes.

4. AVERAGE PAGE QUALITY OVER A
LONG CRAWL

In this section, we report on our experiments. We imple-
mented PageRank and its variants over the CS2 interface,
and ran each algorithm for 100 iterations on the 6.1 billion
link database. (In all our experiments, the PageRank com-
putation converged within less than 100 iterations.)
Although the PageRank scores are conventionally normal-

ized to sum to 1 (making it easier to think of them as a
probability distribution), we normalized them to sum to the
number of nodes in the graph (351 million). This way, the
average page has a PageRank of 1, independent of the num-
ber of pages.
Figure 1 shows the average PageRank of all pages down-

loaded on each day of the crawl. The average score for pages
crawled on the first day is 7.04, more than three times the av-
erage score of 2.07 for pages crawled on the second day. The
average score tapers from there down to 1.08 after the first
week, 0.84 after the second week, and 0.59 after the fourth
week. Clearly, we downloaded more high quality pages, i.e.,
pages with high PageRank, early in the crawl than later
on. We then decided to examine specifically when we had
crawled the highest ranked pages.
We examined the pages with the top N PageRanks, for

increasing values of N from 1 to 328 million (all of the pages
downloaded). Figure 2 graphs the average day on which we
crawled the pages with the highest N scores. Note that the
horizontal axis shows the values of N on a log scale.
All of the top 10 and 91 of the top 100 pages were crawled

on the first day. There are some anomalies in the graph
between N equals 100 and 300, where the average day fluc-
tuates between 2 and 3 (the second and third days of the
crawl). These anomalies are caused by 24 pages in the top
300 (8%) that were downloaded after the first week. Most of
those pages had a lot of local links (links from pages on the
same host), but not many remote links. In other words, the
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Figure 2: Average day on which the top N pages
were crawled

pages on the same host “endorse” each other, but few other
hosts endorse them. We address this phenomenon later in
the last experiment, shown in Figure 4. After N equals 400,
the curve steadily increases to day 24.5, the mean download
day of the entire crawl.
Our next experiment checks that pages with high Page-

Rank are not ranked high only because they were crawled
early. For example, a page whose outgoing links all point
to pages with links back to it might have an artificially high
PageRank if all of its outgoing links have been crawled, but
not too many other pages. For this experiment we ran the
PageRank algorithm on the graph induced by only the first
28 days of the crawl. This graph contains 217 million URLs
and 3.8 billion links between them. We then compared the
top ranked pages between the two data sets. We found that
of the top 1 million scoring pages, 96% were downloaded
during the first 4 weeks, and 76% of them were ranked in
the top 1 million pages in the 28 day data set. That is, it
was clear that those pages were important even before the
crawl had finished.
Figure 3 generalizes these statistics: for each value of N ,

we plot the percentage of overlap between the top N scoring
pages in the 28 day crawl versus the 58 day crawl. Although
the top few pages are different, by the top 20 ranked pages
there is an 80% overlap. The overlap continues in the 60-
80% range through the extent of the entire 28 day data
set. This figure suggests that breadth-first search crawling
is fairly immune to the type of self-endorsement described
above: although the size of the graph induced by the full
crawl is about 60% larger than the graph induced by the 28
day crawl, the longer crawl replaced only about 25% of the
“hot” pages discovered during the first 28 days, irrespective
of the size of the “hot” set.
Some connectivity-based metrics, such as Kleinberg’s al-

gorithm [8], consider only remote links, that is, links between
pages on different hosts. We noticed that some anomalies in
Figure 2 were due to a lot of local links, and decided to ex-
periment with a variant of the PageRank algorithm that only
propagates weights along remote links. This modification of
PageRank counts only links from different hosts as proper
endorsements of a page; links from the same host are viewed
as improper self-endorsement and therefore not counted.
Figure 4 shows our results: the average PageRank for

pages downloaded on the first day is even higher than when
all links are considered. The average PageRank for the first
day is 12.1, while it’s 1.8 on the second day and 1.0 on the
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Figure 3: The percent overlap between the top N
ranked pages in the first 28 vs all 58 days of the
crawl

fourth day. The average PageRank then declines gradually
down to 0.6 on the last day. Notice that the average Page-
Rank on the first day of crawling is higher than in Figure
1, and that the curve falls more sharply. This drop indi-
cates that our crawling strategy is not biased toward self-
endorsing hosts, as a crawler using the standard version of
PageRank would be. We believe that this lack of bias is due
in part to our crawler’s politeness policies, which impose a
rate limit on its accesses to any particular host.
There are some flaws with a metric based only on re-

mote links. For example, http://www.yahoo.com/ has a very
high PageRank score. However, it only has local outlinks,
so its weight gets evenly distributed over all pages in the
graph, rather than just to the other pages in Yahoo! to
which it points. Transitively, the pages on other hosts to
which Yahoo! links do not benefit from the high score of
http://www.yahoo.com/. In the future work section below,
we outline some ideas for remedying this problem.

5. CONCLUSIONS
The experiments described in this paper demonstrate that

a crawler that downloads pages in breadth-first search order
discovers the highest quality pages during the early stages
of the crawl. As the crawl progresses, the quality of the
downloaded pages deteriorates. We speculate that breadth-
first search is a good crawling strategy because the most
important pages have many links to them from numerous
hosts, and those links will be found early, regardless of on
which host or page the crawl originates.
Discovering high-quality pages early on in a crawl is de-

sirable for public web search engines such as AltaVista or
Google, given that none of these search engines is able to
crawl and index more than a fraction of the web.
Our results have practical implications to search engine

companies. Although breadth-first search crawling seems to
be a very natural crawling strategy, not all of the crawlers
we are familiar with employ it. For example, the Internet
Archive crawler described in [3] does not perform a breadth-
first search of the entire web; instead, it picks 64 hosts at a
time and crawls these hosts in parallel. Each host is crawled
exhaustively; links that point to other hosts are saved to seed
subsequent crawls of those hosts. This crawling strategy has
no bias towards high-quality pages; if the hosts to be crawled
are picked in random order, the quality of downloaded pages
will be uniform throughout the crawl.
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Figure 4: Average PageRank when only remote
links are considered

Similarly, the Scooter web crawler used until recently by
AltaVista downloaded pages in essentially random order.
(At this point, AltaVista is using Mercator.) This approach
made it easier to provide politeness guarantees — essentially,
it spread the load imposed by the crawler evenly over all web
servers — but as a result, the quality of the discovered pages
is uniform over the life of the crawl.
We cannot make any statements about other large-scale

web crawlers. Most search engine companies treat their
crawling strategy as a trade secret, and have not described
it in the literature.
Cho et al. [4] showed that using a connectivity-based or-

dering metric for downloads, such as PageRank, will steer
the crawler towards even higher-quality pages than using
breadth-first search. However, computing PageRank values
for several hundred million or more pages is an extremely
expensive computation. It took us over a day to compute
the PageRanks of our graph of 351 million pages, despite
the fact that we had the hardware resources to hold the en-
tire graph in memory! Using PageRank to steer a crawler
would require multiple such computations over larger and
larger graphs, in order to take newly discovered pages into
account, and is essentially infeasible in real time. On the
other hand, crawling in breadth-first search order provides
a fairly good bias towards high quality pages without the
computational cost. We believe that crawling in breadth-
first search order provides the better tradeoff.

6. FUTURE WORK
There are two directions in which we would like to extend

this work. One direction is to try a variant of PageRank
which weighs links to pages on remote hosts differently than
links to other pages on the same host. From the experiment
that generated Figure 4 above, we learned that remote links
should count more than local links, but that weights should
be propagated along local links as well (e.g., to distribute the
weight of http://www.yahoo.com/ to the pages that Yahoo!
recommends). We suspect that some search engines already
use different weights for links, but there has been no formal
study of how to divide the weights among the links or even
whether the division should be static (e.g., remote links get
80% of the total weight) or proportional to the number of
total links (e.g., each remote link gets four times the weight
of each local link).
The other direction is to try different connectivity-based
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metrics. While PageRank is the only connectivity measure
we know aimed at ranking all of the pages on the world wide
web, Kleinberg’s algorithm [8] is another well-known connec-
tivity analysis algorithm targeted towards computing qual-
ity scores for pages. The algorithm computes two scores for
each document: a hub score and an authority score. Pages
with high authority scores are expected to have high-quality
content; the authority scores are similar in intent to Page-
Ranks. Kleinberg’s algorithm is designed to rank the results
of a query to a search engine, and only considers a small set
of pages when it computes authority scores. However, we
believe that we can extend the algorithm to consider the
entire graph of the web.
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