March, 1963:
Cover: Here we get an early view of what will become Silicon Valley – looking across San Jose with San Francisco in upper-left, Berkeley and Oakland in upper-right. This is a part of the new IEEE’s San Francisco Section, part of the new Region 6. As part of the merger of AIEE and IRE, there are several new subsections formed -- Santa Clara Valley, and Fresno -- to supplement the existing East Bay subsection. There are still five Divisions and 20 Professional Groups that need to be re-aligned into the IEEE’s new local chapters. Other merger details on page 5.
MARCH 1, 1963
SAN FRANCISCO SECTION
INSTITUTE OF ELECTRICAL & ELECTRONICS ENGINEERS

remind

March 5 (Tuesday) SFS/PTGEC, ID
March 12 (Tuesday) SFS, SCVS
March 13 (Wednesday) PTGAP/PTGED/PTGMTT/PTGSET, PTGEM
March 21 (Thursday) FSS
March 27 (Wednesday) PTGAP/PTGED/PTGMTT/PTGSET, PTGIM
April 10 (Wednesday) PTGAP/PTGED/PTGMTT/PTGSET
April 24 (Wednesday) PTGIM
May 29 (Wednesday) PTGIM
NE is a brand which has been making its mark throughout the West for almost 30 years. Wherever the Neely brand is seen, it is known to represent the highest standards in sales engineering and service in the electronic industry. Your telephone call assures you of red hot service from any of eight offices located throughout California, Arizona, Nevada and New Mexico. Once you have enjoyed the Neely brand of service— you won't be satisfied with less.

NEELY enterprises

ELECTRONIC MANUFACTURERS' REPRESENTATIVES
KAY NOISE GENERATORS

Wide frequency range of 1 mc to 3000 mc. Band-band 50-ohm output with no tuning.

Low voltage standing-wave ratio over entire frequency range.

Noise figure, 0 — 20 db.

Noise figures measured directly in db.

Accuracy ± 0.5 db.

Price: $790. F.O.B. factory. $69. f.a.s. N.Y.

KAY Mega - Node 3000

1 - 3000 MC CALIBRATED (VARIABLE) NOISE GENERATOR

Wide frequency range of 3 mc to 500 mc. Band-band 50-ohm output with no tuning.

Low voltage standing-wave ratio over entire frequency range (less than 1.2).

Meter calibrated both in noise figure and in noise diode current.

Noise figures measured directly in db.

Accuracy ± 0.5 db.

Price: $375.00, f.o.b. factory. $412.50, f.a.s. N.Y.

KAY Mega - Node 403-A

3 - 500 MC CALIBRATED (VARIABLE) RANDOM NOISE SOURCE

Wide frequency range of 3 mc to 500 mc. Band-band 50-ohm output with no tuning.

Low voltage standing-wave ratio over entire frequency range (less than 1.2).

Meter calibrated both in noise figure and in noise diode current.

Noise figures measured directly in db.

Accuracy ± 0.5 db.

Price: $375.00, f.o.b. factory. $412.50, f.a.s. N.Y.

KAY Mega - Node 240-B

5 MC TO 220 MC CALIBRATED VARIABLE NOISE GENERATOR

For catalog write:

KAY ELECTRIC COMPANY
DEPT. E-1 MAPLE AVENUE - PINE BROOK, MORRIS COUNTY, N. J. Capital 6-4000

March 1, 1963
HIGH-POWER PULSE COMPONENTS DESIGNED AND MANUFACTURED FOR MODULATOR APPLICATIONS

- PULSE CAPACITORS
- PULSE-FORMING NETWORKS
- PULSE TRANSFORMERS
- PULSE SYSTEMS

PULSE-FORMING NETWORKS
A rack-mounted network with average power of 100 kw, peak power of 100 Mw, an airborne network with average power of 300 watts, peak power of 300 kw.

HIGH-VOLTAGE CAPACITORS
Available with ratings from 2 kv to 200 kv, and pulse currents to 50,000 amps.

General Capacitor is your proven source for reliable pulse-power components. Our engineers offer you wide experience in the development, design, and production of low-inductance, high-current pulse capacitors, pulse-forming networks, pulse transformers, ignitron switch and crowbar systems, and foil-wound charging chokes for custom applications.

Sophisticated components and sub-systems are designed, built, and tested to your specifications. Send us your technical inquiries and requests for quotation.

GENERAL CAPACITOR COMPANY
755 LOMA VERDE AVENUE
PALO ALTO, CALIFORNIA • (415) 321-8304
COMMUNICATION SPECIALISTS

COMPONENT PRODUCTION

Communicom supplies a wide variety of filters and networks using toroidal coils and ferrite pot-core coils. If your filter is not in stock, Communicom will design and manufacture to your specifications. Small precision transformers, pot coils, and toroidal coils are also produced to your requirements. Careful assembly, impregnation, sealing, and testing with equipment calibrated from NBS standards assures highest quality for military or industrial applications.

SYSTEM DEVELOPMENT

Communicom is now in expanded quarters in Palo Alto. Half of the plant is devoted to research and development and half to manufacturing.

Communicom specializes in the development of transmission systems, such as: data-multiplex, voice-multiplex, and related equipment for use on microwave or cable. Technical capabilities also include design of precision oscillators, discriminators, switching circuits, frequency multipliers, and the like.

COMMUNICATION SPECIALISTS

Volume 9, Number 13

March 1, 1963

Published twice a month except July and August by San Francisco Section, Institute of Electrical and Electronics Engineers

JAMES D. WARNOCK, Executive Editor

Address all correspondence, editorial and advertising material to:
IEEE OFFICE, SUITE 2210, 701 WELCH ROAD, PALO ALTO, CALIFORNIA

Mailing office of publication: 396 Pacific Ave., Fifth Floor. Second class postage paid at San Francisco, Calif.

Subscription: $4.00 (members); $6.00 (others); overseas, $7.00 per annum.

SECTION MEMBERS! To stay on mailing list when you move, send address change promptly to IEEE National Headquarters, Box A, Lenox Hill Station, New York 21, N.Y.

New Grid Reporters ... 4
Meeting Calendar .. 4, 5
Consolidation Notes, Counterparts of IEEE 5
Meetings Ahead (PTGAC, ID, SCVS, FSS, Laser Series) 6
Meeting Reviews (SFS/PTGCS/CD, PTGAC, PTGIT) 8, 12, 13
More Consolidation Notes, National Publications Policy 14
Manufacturer/Representative Index, Representative Directory ..., 16, 17
Events of Interest, IEEE-Sponsored National Events 19
Section Membership—New Members 20
Index to Advertisers ... 20

Cover

Only a portion of the area to be served by the San Francisco Section of IEEE is shown in this aerial photograph looking from a point above San Jose to the tip of the San Francisco Peninsula, the Golden Gate, and Marin County. Oakland and Berkeley are at upper right. Proposed section boundaries will include 22 counties: Del Norte, Humboldt, Mendocino, Lake, Sonoma, Napa, Marin, Solano, Contra Costa, San Francisco, Alameda, San Mateo, Santa Clara, Santa Cruz, Monterey, San Benito, Mariposa, Merced, Madera, Fresno, Kings, and Tulare. (Photo courtesy of Air-Photo Co., Palo Alto Airport.)

IEEE Section Chairmen through June 30, 1963

Membership Co-chairmen: Fred MacKenzie, Stanford Research Institute, DA 6-6200
William Warren, Shell Development Co., OL 3-2100

Publications Advisor: Peter Sherrill, West Associates

Executive Secretary: James D. Warnock, Section Office: Suite 2210, 701 Welch Rd.
Palo Alto, California, DA 1-1332

Advertising

East Coast: Cal Hart, H & H Associates, 501 Fifth Ave., New York 17, N.Y., YU 6-5886
Southern California: Jack M. Rider & Associates, 1709 W. 8th St., Los Angeles 17, Calif., HU 3-0537
MEETING CALENDAR

SAN FRANCISCO SECTION
(4 Joint meeting with PTGEC)
"Practical Applications for Adaptive Circuits and Systems"
Speaker: Professor Bernard Widrow, Stanford University
Place: Physics Lecture Hall, Room 101, Stanford University
Dinner: 6:00 P.M., The Red Shack, 4085 El Camino Real, Palo Alto
Reservations: May Sharp (Lockheed), DA 3-1831, Ext. 141, by March 4

SAN FRANCISCO SECTION
6:00 P.M. • Tuesday, March 12
Nontechnical, social event along the lines of a stag party
Place: The Village, Columbus at Lombard, San Francisco
Tickets: $6.00 each (including dinner, group entertainment, dominoes, door prizes, and other forms of small group entertainment), from Douglas D. Dodds, EX 2-5353

FRESNO SUBSECTION
"Astron Reactor Design"
Speaker: Dean O. Kippenhan, project engineer, electronics engineering dept., Lawrence Radiation Laboratory, Livermore
Place: P.G. & E. Bldg., 1401 Fulton St., Fresno

SANTA CLARA VALLEY SUBSECTION
7:30 P.M. • Tuesday, March 12
Field Trip
Place: Main Entrance. Jennings Radio Manufacturing Corp., subsidiary of I.T. & T., 970 McLaughlin Ave., San Jose (McLaughlin Avenue is southern extension of S. 24th Street, between Williams and Story roads, near Bayshore Freeway)

DIVISIONS
Industrial
8:00 P.M. • Tuesday, March 5
"A New Approach to 100% Failure-Free Power Systems"
Speaker: Carl E. Gieb, Jr., special project engineer, Ideal Electric & Mfg. Co., Mansfield, Ohio
Place: Room 232, Pacific Gas & Electric Bldg., 245 Market St., San Francisco

PROFESSIONAL TECHNICAL GROUPS
Antennas & Propagation
8:00 P.M. • Wednesday, March 13
(Four-part Tutorial Lecture Series: "Laser Theory, Technique, and Application"
—Joint with PTGED, PTGMFF, and PTGSET)
Lecture No. 2: "Gas Discharge and Semiconductor Lasers"
Speaker: Dr. Arnold Bloom, Spectra-Physics Inc., Mountain View
Place: Physics Lecture Hall, Stanford University
Meet-the-Speaker Dinner: 6:00 P.M., Red Cottage, 1706 El Camino Real, Menlo Park
Reservations: Darlene Wheeler, DA 6-6200, Ext. 2695

Antennas & Propagation
8:00 P.M. • Wednesday, March 27
Lecture No. 3: "Laser Techniques and Applications"
Speaker: Professor Anthony Siegman, Stanford University
Place: Physics Lecture Hall, Stanford University
Dinner reservations: Darlene Wheeler, DA 6-6200, Ext. 2695
MEETING CALENDAR

Antennas & Propagation 8:00 P.M. • Wednesday, April 10
Speaker: Dr. Malcolm Stitch, Hughes Aircraft Co., Culver City
Place: Physics Lecture Hall, Stanford University
Dinner reservations: Darlene Wheeler, DA 6-6200, Ext. 2695

Automatic Control 8:15 P.M. • Thursday, March 14
"The Computer Control Problem"
Speaker: Dr. Jack Bertram, manager, controls systems research, IBM
Place: Electrical Engineering 126, Stanford University
Dinner: 6:15 P.M., Old Plantation (formerly Sabella's), El Camino Real & Cherry Chase, Sunnyvale
Reservations: Mrs. Pauline Eckman, DA 1-3300, Ext. 268, by noon, Wednesday, March 13

Electron Devices 8:00 P.M. • Wednesday, Mar. 13, 27
(Tutorial Lecture Series: Joint with PTGAP, PTGMTT, and PTGSET, see above)

Electronic Computers 8:00 P.M. • Tuesday, March 5
(Joint meeting with SFS, see above)

Engineering Management 8:00 P.M. • Wednesday, March 13
Speaker: Dr. Walter H. Schwidetsky, manager, space navigation and data systems, General Dynamics/Astronautics
Place: Caravan Inn, 4375 El Camino Real, Mountain View
Happy Hour: 6:00 P.M.
Dinner: 7:00 P.M., smorgasbord, $3.50 inclusive

Instrumentation & Measurement 8:15 P.M. • Wednesday, March 27
Lecture No. 3: "The Instrumentation and Performance of the Mariner II Experiments"
Speaker: Ivan Walenta, Mariner II science project engineer, JPL, California Institute of Technology, Pasadena
Place: Lockheed Auditorium, Bldg. 202, 3251 Hanover St., Palo Alto
Dinner: 6:15 P.M., L'Omelette Restaurant, 4170 El Camino Real, Palo Alto
Reservations: Mrs. Marje Andrews, DA 1-3300, Ext. 273

Instrumentation & Measurement 8:15 P.M. • Wednesday, April 24
Lecture No. 4: "Detection of Planetary Life"
Speaker, place to be announced

Instrumentation & Measurement 8:15 P.M. • Wednesday, May 29
Lecture No. 5: "Instrumentation for Men in Space"
Speaker, place to be announced

Microwave Theory & Techniques 8:00 P.M. • Wednesday, Mar. 13, 27
(Tutorial Lecture Series: Joint with PTGAP, PTGED, and PTGSET, see above)

Space Electronics & Telemetry 8:00 P.M. • Wednesday, Mar. 13, 27
(Tutorial Lecture Series: Joint with PTGAP, PTGED, PTGMTT, see above)

CONSOLIDATION NOTES
COUNTERPARTS OF IEEE

With this issue the Grid now reaches a merged readership of nearly 10,000 throughout the Bay Area and beyond, including nearly 2000 members of the San Francisco Section of AIEE/IEEE, subscribers, and others.

Merger details, under the co-chairmanship of Stanley F. Kaisel and Robert E. Grady, with Dean Robert Parden of Santa Clara University acting as honorary chairman, have made great progress in considerations of finance, publications, program, membership and related activities, publicity and public relations, and historical committees, all of these areas being virtually agreed upon.

Still to be resolved are awards procedure and organization for the new IEEE section; the formation of a nominating committee and its development of a slate of officers to be elected by the membership for the fiscal/program year 1963-64; the writing and adoption of new bylaws; and the question of how many subsections there will be in the section.

Further progress is expected at the March 5 meeting of the joint merger committee.

Five active AIEE/IEEE divisions have been added to the roster of Grid reporters, and their meetings will be publicized in the meeting calendar and elsewhere in the publication in the same manner of handling professional group (now known as professional technical group) meetings in the past.

Details on some of the various AIEE/IEEE chairmen and their activities follow.

Victor E. Kaste is chairman of the section. His firm is the General Electric Co. and his headquarters are at 235 Montgomery St., San Francisco.

W. H. Peterson is vice chairman, responsible for the scheduling of gen-

(Continued on page 10)
meeting ahead

CONTROLLING COMPUTERS

The computer control problem will be the subject of J. E. Bertram, manager, controls systems research, IBM, San Jose, at the March 14 meeting of PTGAC, Electrical Engineering 126, Stanford University.

The speaker will explore the control and data-processing problems involved in applying a digital computer to the control of a typical industrial process.

A graduate of Washington University, St. Louis (BS EE) and Columbia University (MS, Engineering SC D), Dr. Bertram was a member of the applied physics group of the engineering research laboratory of DuPont, and an instructor, associate, and assistant professor at Columbia, having been appointed a research staff member in 1958 at IBM, where he has worked on problems related to the use of digital computers in control applications. Since April 1961 he has been manager of control systems research.

meeting ahead

INDUSTRIAL DIVISION OF IEEE

A new approach to 100 percent failure-free power systems will be the subject of Carl E. Gieb, Jr., special project engineer, Ideal Electric & Mfg. Co., Mansfield, Ohio, before the Industrial Division of IEEE on Tuesday, March 5.

The 8 p.m. meeting will be held in Room 232 of the P.G. & E. Building, 245 Market St., San Francisco.

The requirement of failure-free power systems has become increasingly stringent for critical applications such as instrumentation, control, and computer power supplies. Mr. Gieb will review the various systems available today and describe in detail a new development which features emergency power supply up to 2000 KW with no drop in frequency, no drop in voltage, and no shock to the stand-by prime mover.

communication notes

TELEPHONE REVIEW

To reach the Section Office, dial 321-1332 or 321-1333. To reach the WESCON Business Office, dial 321-1334 or 321-1335.

meeting ahead

JENNINGS FIELD TRIP

The Santa Clara Valley Subsection of IEEE will sponsor a field trip to Jennings Radio Manufacturing Corp., 970 McLaughlin Avenue, San Jose, at 7:30 p.m. on Tuesday, March 12.

The high-power vacuum electronic components test laboratories at Jennings will hold an open house, with demonstrations of high-voltage and high-power DC, AC, and radio frequencies, along with vibration, shock, and other environmental factors. The Jennings high-voltage vacuum-powered switch laboratory has available up to 200,000 amperes at lower voltage levels, and up to 200,000 volts of 60-cycle power. It also has up to 500,000 volts peak of 60 cycles for high-potential testing, and one million volts for 1/2x40 microsecond wave impulse testing.

The high-power radio-frequency laboratory has DC and radio-frequency transmitter capabilities up to 400 kilowatts CW, and a frequency range of 300 kilocycles at over 120,000 volts, up to 600 megacycles. This equipment is used for testing the Jennings radio-frequency vacuum switches, vacuum relays, and vacuum capacitors. It also provides up to 70,000 volts DC for testing vacuum switches used to interrupt higher voltage DC. The environmental test lab provides all the requirements of high-power vibration, shock, and other environmental tests required for reliable military applications. This laboratory also provides precision measurement and calibration for the Jennings vacuum-tube voltmeter which measures up to 200 KV peak of 60 cycles. RF and pulse. Special effect of high-power vibration will also be shown.

Robert W. Sumner, Westinghouse Electric Corp., Sunnyvale, is chairman of the subsection; Marvin W. Sheets, General Electric Co., San Jose, is secretary-treasurer.

SECOND IN LASER SERIES

The second lecture in the Laser Tutorial Series is to be given Wednesday, March 13, by Dr. Arnold Bloom, on the subject, "Gas Discharge and Semiconductor Lasers," at the Stanford physics lecture hall.

Dr. Bloom performed his doctoral studies in high-energy nuclear physics under Chamberlain and Segré at the University of California. He has since concentrated on theoretical investigations of resonance physics and optical pumping, accompanied by concurrent experimental work. Beginning at Varian in the theoretical study of nuclear magnetic resonance, he made significant contributions in this field in 1955 publishing a basic paper on double resonance phenomena. Since then he has published over a dozen papers in the field of optical pumping. During 1958, he studied this subject at the University of Paris with Professor A. Kastler, one of the original discoverers of the optical pumping phenomena. Dr. Bloom has given invited papers at several significant conferences and has authored more than 20 technical papers. He is therefore eminently qualified to discuss those lasers that employ gas discharge excitation.

meeting ahead

FRESNO SUBSECTION

Astron reactor design will be the subject of Dean O. Kippenhan, project engineer, electronics engineering department, Lawrence Radiation Laboratory, Livermore, at the March meeting of the Fresno Subsection of IEEE. The 8:00 p.m. meeting will be held on March 21 in the P.G. & E. Building, 1401 Fulton Street, Fresno.

Roy V. Hall is chairman of the subsection; J. M. Swall, P.G. & E., Fresno, is secretary-treasurer.
Hughes is hiring! Numerous opportunities now exist in a variety of advanced projects and studies. Examples include: The MMRBM—Mobile Mid-Range Ballistic Missile (Integration, Assembly & Checkout), TFX(N) Electronics, SURVEYOR—soft-landing lunar spacecraft, SYNCOM—synchronous-orbit communications satellite, VATE—automatic test equipment, BAMBI—anti-missile defense, and others. Positions are open at all levels for specialists with degrees from accredited universities.

CONTROLS ENGINEERS. Concerns airborne computers and other controls related areas for: missiles and space vehicles, satellites, radar tracking, control circuitry, control systems, control techniques, transistorized equalization networks and control servomechanisms.

CIRCUIT DESIGNERS. Involves analysis and synthesis of systems for: telemetry and command circuits for space vehicles, high efficiency power supplies for airborne and space electronic systems, space command, space television, guidance and control systems, and many others.

INFRARED SPECIALISTS. To perform systems analysis and preliminary design in infrared activities for: satellite detection and identification, air-to-air missiles AICBM, infrared range measurement, air-to-air detection search sets, optical systems, detection cryogenics and others.

SYSTEMS ANALYSTS. To consider such basic problems as: requirements of manned space flight; automatic target recognition requirements for unmanned satellites or high speed strike reconnaissance systems; IR systems requirements for ballistic missile defense.
meeting review

IONOSPHERIC SOUNDINGS

David S. Pratt, project engineer at Granger Associates, presented a very interesting program of slides and motion picture material concerned with synchronized oblique ionospheric soundings, January 15, to a combined meeting of IRE/PGCS/AIEE (Communications Division).

Mr. Pratt described older methods, such as vertical sounding and backscatter, and discussed their advantages and limitations when applied to the 4- to 32-megacycle communications band. The propagation characteristics of this portion of the spectrum were considered in some detail with the aid of slides depicting single and multi-hop paths between two fixed points and the effects of the ionosphere on these paths. These changing characteristics illustrated very well the desirability of changing frequency on a given circuit every few hours if the optimum performance is to be realized.

A description of the synchronized oblique sounding technique and its associated equipment pointed out the advantages of this type of sounding. By transmitting a very-short-duration pulse over an actual or typical communications path, the characteristic of the received pulse (or lack of a received pulse) may be analyzed to determine the usability of the path at a given frequency at a given time. In the synchronized oblique sounding system, a transmitter and receiver are stepped in discrete frequency increments throughout the spectrum of 4 to 32 megacycles.

A pulse of transmitted energy only a few microseconds in duration is transmitted, and its reception or absence at the receiving location is recorded on a suitable storage display tube. As the transmitter and receiver step through the frequency spectrum, a pattern is obtained which will show the lowest usable frequency, the multi-hop characteristics, and the maximum usable frequency at the particular time of sounding.

If soundings are taken at regular intervals throughout the day, actual predictions of changes of the maximum usable frequency may be made prior to the change. The ability to predict these changes has resulted in an increase of the circuit usability from 92 percent to 99 percent over a test path between Hawaii and San Francisco.

The synchronized oblique sounding technique will permit the communications circuit operator to observe when the lowest usable frequency is higher than the maximum usable frequency and, as a result, a circuit rendered inoperative. This condition may easily be observed on present-day sounding equipment.

Mr. Pratt pointed out the importance of known antenna characteristics for both the sounding and the communications circuits. Since the angle of radiation has bearing on the maximum usable frequency, the communication antenna and the sounding antenna, if not one and the same, must have identical characteristics or be capable of being equated.

In the question-and-answer session that followed Mr. Pratt's presentation, it was brought out that interference to other services by synchronized oblique sounding was nil owing to the extremely short pulse duration and slow repetition rate used.

Mr. Pratt joined Granger Associates in 1962. He is participating in design and development of ionosphere sounders and communications systems. From 1957 to 1962 he was a research associate with the electronics laboratory of Stanford University. His duties there included design and development of instrumentation for research in ionospheric physics and radio propagation. He is a member of the IRE and the American Geophysical Union. He is the author or co-author of numerous technical papers and reports.

Maurice H. Kebby
NEW TEKTRONIX
SPLIT SCREEN
STORAGE
OSCILLOSCOPE

for storage and non-storage displays

Type 564

For storage and non-storage displays—The Type 564 has display capabilities for upper-half, lower-half, or full-screen storage or non-storage (with conventional CRT operation in the non-storage mode).

The storage capability lends itself to single-shot displays at slow or medium speeds and displays of repetitive waveforms at faster speeds using the integration technique. Single-trace writing speed is faster than 25 centimeters per millisecond. On repetitive traces, the integrate feature provides an increase in stored writing rate. For example, it is possible to increase the stored writing rate by 10 times on 12 repetitive traces.

Storage time can be more than one hour; erase time approximately 250 milliseconds.

The Type 564 has display capabilities for differential, multi-trace, wide-band, delaying sweep, and sampling applications.

Types and degree of performance depend upon 2-Series and 3-Series Amplifier and Time-Base Plug-In Units used.

Type 564 Storage Oscilloscope (without plug-in units) .. $390

Plug-In Units pictured in full-screen-storage display:

Type 3A75 50 mv/cm Amplifier Unit .. $115

Type 2B67 Time Base Unit with single-sweep facility $175

U.S. Sales Prices. f.o.b. Beaverton, Oregon

Call your Tektronix Field Engineer for more information or to arrange a demonstration.

Wide operating versatility available through 2-series and 3-series plug-ins

<table>
<thead>
<tr>
<th>AMPLIFIER UNITS TYPE</th>
<th>PASSBAND (3-dB down)</th>
<th>SENSITIVITY</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A60</td>
<td>dc—1 Mc.</td>
<td>50 mv/cm—50 v/cm 4 decade slopes with variable control.</td>
<td>$105</td>
</tr>
<tr>
<td>2A63—Differential (50:1 rejection ratio)</td>
<td>dc—300 kc.</td>
<td>1 mv/cm—20 v/cm 1-2-5 sequence, with variable control.</td>
<td>$150</td>
</tr>
<tr>
<td>3A72—Dual Trace (identical channels)</td>
<td>dc—450 kc. (each channel)</td>
<td>10 mv/cm—20 v/cm, 1-2-5 sequence, with variable control.</td>
<td>$250</td>
</tr>
<tr>
<td>3A74—Four Trace (identical channels)</td>
<td>dc—2 Mc. (each channel)</td>
<td>20 mv/cm—10 v/cm, 1-2-5 sequence, with variable control.</td>
<td>$550</td>
</tr>
<tr>
<td>3A75</td>
<td>dc—4 Mc.</td>
<td>50 mv/cm—20 v/cm, 1-2-5 sequence, with variable control.</td>
<td>$175</td>
</tr>
<tr>
<td>3A15—Dual Trace (identical Channels)</td>
<td>dc—10 Mc. (each channel)</td>
<td>10 mv/cm—10 v/cm 1-2-5 sequence with variable control.</td>
<td>$410</td>
</tr>
<tr>
<td>3516—Dual Trace Sampling (for use with 3T77)</td>
<td>equivalent dc—500 kc. (0.4-msec rise)</td>
<td>2 mv/cm—200 v/cm, 1-2-5 sequence, with variable control.</td>
<td>$1100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIME-BASE UNITS TYPE</th>
<th>SWEEP FEATURES</th>
<th>TRIGGERING</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2B67</td>
<td>1 microsec to 5 sec, 1-2-5 sequence, variable between rates, 5X Magnifier.</td>
<td>Internal, External, Line; Amplitude-Level Selection; AC or DC Coupling; Automatic or Free-Run; dc Slope.</td>
<td>$175</td>
</tr>
<tr>
<td>3B50</td>
<td>Normal and Delayed Sweeps—0.5 microsec to 1 sec, 1-2-5 sequence 18 calibrated delay settings; 0.5 microsec to 1 sec, variable between rates uncalibrated.</td>
<td>Internal or External; AC or DC Coupling; Automatic; dc Slope.</td>
<td>$475</td>
</tr>
<tr>
<td>3B75</td>
<td>Normal and Delayed Sweeps—0.5 microsec to 1 sec, 1-2-5 sequence. Continuously variable calibrated delay from 0.5 microsec to 10 sec.</td>
<td>Internal or External; DC Coupling; Automatic; dc Slope.</td>
<td>$155</td>
</tr>
<tr>
<td>3B77</td>
<td>Equivalent to 0.2 microsec to 10 microsec, 1-2-5 sequence, variable between rates, 10X Magnifier.</td>
<td>Internal or External, dc Slope.</td>
<td>$650</td>
</tr>
</tbody>
</table>

Tektronix, Inc. SAN FRANCISCO FIELD OFFICES
3544 FABIAN WAY • PALO ALTO, CALIF. • DAVENTPORT 6-8560
3530 GOLDEN GATE WAY • LAFAYETTE, CALIF. • YELLOWSTONE 5-6101
From Oakland, Berkeley, Richmond, Albany and San Leandro; CLIFORD 4-5353

march 1, 1963
Saves Display Space
Tung-Sol 6977
Subminiature
Indicator Triode

This filamentary, high vacuum tube has a fluorescent anode and will replace neon lamps in computer circuits. Its high impedance and small signal requirements make it ideal for transistorized circuits.

Why don't you get the benefit of Tung-Sol component knowledge and experience too? Tung-Sol components—whether transistors, tubes or silicon rectifiers—fill virtually every military, commercial and entertainment requirement with unexcelled dependability. For quick and efficient technical assistance in the application of all Tung-Sol components, contact:

Your Tung-Sol Representative:
ED DAVENPORT
Menlo Park, California
DA 2-4671

Your stocking distributors:
OAKLAND
ELMAR ELECTRONICS
140 11th St.
TE 4-3511
SAN FRANCISCO
PACIFIC WHOLESALE
1830 Mission St.
UN 1-3745
SAN JOSE
SCHAD ELECTRONICS
499 South Market St.
CY 7-5858

MORE AIEE/IEEE eral and technical programs. He is division electric superintendent of the East Bay division, P.G. & E.

Gerard K. Lewis is secretary-treasurer of the section. His firm is the Allis-Chalmers Mfg. Co. with headquarters at 142 Sansome St., San Francisco.

Robert E. Grady is junior past chairman of the section and chairman of the joint merger committee. He is a consulting engineer.

Dr. A. Tilles is a past chairman of the section and is currently chairman of the transfers committee, responsible for encouraging the upgrading of members and selecting members for the grade of Fellow. He has taught at the University of California and the Israeli Institute of Technology in Haifa. He is presently in the electronics engineering department at the University of California Lawrence Radiation Laboratory at Livermore.

W. D. Garland is a member at large of the executive committee and chairman of the subsection committee. He is a staff transmission engineer with P.T. & T.

Roy V. Hall is chairman of the Fresno subsection and has placed emphasis in programming on reaching high school science classes and college students. He served with P.G. & E. from 1926 until March 1, 1956, retiring at that time.

Charles G. Dols is chairman of the technical papers committee which conducts the section prize paper contest. He is an electronics engineer at the University of California's Lawrence Radiation Laboratory.

Robert Howland is vice chairman of the program committee of the Communications Division. He is also treasurer of PTGEWS. As senior engineer with P.T. & T., he is responsible for many of the private line service designs for the military services.

James J. McCann is chairman of the technical program committee of the Power Division. He is supervising electrical engineer, department of engineering services, P.G. & E.

J. A. Wells is chairman of the Industrial Division technical programs. He founded Artwel Electric manufacturing representative firm, in 1957.

Frank Thatcher is chairman of the publicity committee and responsible for coordinating material for the Grid. He is a transmission engineer with P.T. & T.

Ronald K. Church is program chairman of the Instrumentation and Controls Division. He is a member of the product development and production engineering operations at Hewlett-Packard, Palo Alto.

Einar Nilsson is chairman of the fellowship committee, responsible for welcoming new members at the sec-
(Continued on page 12)
STEMCO THERMOSTATS
For Electronic, Avionic, Aerospace Applications
(Typical units shown; many other types available)

1, 7. TYPE C1 semi-enclosed (1), hermetically sealed (2). Small, positive acting with electrically independent bimetal strip for operation from -10°F to 300°F. Rated at approximately 3 amps, depending on application. Hermetically sealed type can be furnished as double thermostat "alarm" type. Various terminals and mountings. Bulletin 5000.

3. TYPE M† rated: 5 to 10 amps, 15 to 230 VAC. Screw or nozzle mountings. Bulletin 5000.

4. TYPE MXI semi-enclosed (5), hermetically sealed (6). Snap acting miniature units to open on temperature rise for missile, avionic, electronic and similar uses. 2°C to 6°F differentials available. Rated at 3 amps to 1 amp, depending on duty cycle, at 115 and 28 VAC/DC. Various mountings, including brackets. Bulletin 6100.

5. TYPE M1 adjustable (7), non-adjustable (8). Positive acting with single stud or nozzle mounting. Operation to 800°F. Rated at 150 watts at 115 VAC, 7 amps at 230 VAC. Various adjusting stems, etc. Bulletin 1000.

10. TYPE SA† adjustable, or non-adjustable. Snap action bimetal strip type for operation to 300°F. Depending on duty, rated: 5 to 10 amps, 115 or 230 VAC. Screw or nozzle mountings. Bulletin 4000.

11. TYPE A† semi-enclosed (I), hermetically sealed (12). Insulated, electrically independent bimetal disc gives fast response and quick, snap action control for electronic and apparatus applications from 50°F to 300°F. Lower or higher on special order. Rating: 5 to 1000amps. Bulletin 3000.

13. POTTED TYPES A* & G*. For refrigeration, air conditioning, or applications requiring a sealed thermostat, the Types A and G are available with lead wires and epoxy sealed. Type G is shown. Various mountings, including brackets. Bulletin 3000 for Type A, Bulletin 3500 for Type G.

14. TYPE R† adjustable, sealed or non-adjustable. Positive acting for operation to 600°F. Rated at 150 watts at 115 VAC, 4 amps at 230 VAC. Screw terminals. Bulletin 7000.

15. TYPE W† adjustable, or non-adjustable. Snap action bimetal strip type for operation to 300°F. Depending on duty, rated: 5 to 10 amps, 115 or 230 VAC. Screw or nozzle mountings. Bulletin 4000.

16. TYPE G* exposed, or enclosed bimetal disc types, or epoxy sealed for moisture and dust resistance. Snap action for positive and instantaneous opening or closing of electronic and avionic circuits to 300°F. Various mountings and terminals. Bulletin 3500.

Illustrations, for general information only, do not necessarily show size comparisons. Fully dimensioned and certified prints on request. Manufacturer reserves right to alter specifications without notice.
*Refer to Guide 400 EO for UL or CSA approved ratings.†These thermostats covered by patents issued or applied for.

STEVENSCo MANUFACTURING COMPANY, INC.
P.O. Box 1007 — Mansfield, Ohio
SOLVING CONTROL PROBLEMS

An interesting approach to the solution of optimal control problems was presented at the January 31 meeting of the PGAC. Dr. J. B. Rosen, visiting professor of computer science at Stanford University, developed a convex programming solution employing a somewhat more general cost function than is usually considered.

Given the vector differential equation

\[x = f(x, u(t), t); 0 \leq t \leq T \]

where \(x \) is the \(n \)-dimensional state vector and \(u \) is the \(n \)-dimensional input vector, we are asked to find that input \(u(t) \) that minimizes

\[J(u) = \rho(x(T)) \]

where \(\rho(x) \) is a convex function of \(x \). We furthermore constrain both the state and input vectors to lie inside the region

\[a^i(t) \leq u^i(t) \leq a^f(t) \]
\[p^i(t) \leq x^i(t) \leq p^f(t). \]

Dr. Rosen first rephrased the problem in terms that made it amenable to attack by programming methods. When attention is limited to the case

where the equations for \(x \) are linear but \(\rho \) is allowed to be nonlinear, explicit solutions can be found for \(x \) as a function of \(u \). In this continuous case, however, the solution for the minimum becomes an infinite-dimensional programming problem.

In order to reduce the dimensionality, a finite-dimensional approximation is made. The interval \(0 \leq t \leq T \) is broken into \(m \) equal lengths \(\Delta t \). Using this approximation and taking advantage of an efficient convex programming method, rapid solutions can be obtained on present-day computers such as the IBM 7090.

Slides were presented which showed the results of solutions of problems with \(n = 4 \) and \(n = 8 \) using \(m = 25 \) and \(m = 50 \). One point that evoked considerable interest was the fact that the solutions are not "bang-bang"; that is, they do not necessarily lie on the control or state vector constraints for all \(t \) because of the type of cost function used.

Dr. Rosen remarked that the program had been run some 25 times

(Continued on page 13)
ZERO-SUM GAMES

On January 24, 1963, at the Philco Auditorium, Dr. William L. Root of the University of Michigan addressed a PGIT audience of forty on "Communication Through Unspecified Additive Noise."

In the face of heavy and completely unstructured interference, as contrasted with additive noise of known statistics or the multiplicative noise of multipath, the theory of two-person zero-sum games is pertinent. One player is the communicators; the second player is nature or a jammer, whichever is producing the interference. If the interference is bounded at a level A and the minimum signal level is 1, then A is the maximum noise-to-signal ratio and is assumed to be greater than one. The payoff for the game is simply the probability of making a correct decision. Since coin tossing at the receiver gives a probability of correct decision of one-half, the communication system must give a payoff larger than one-half to be useful. For simplicity, the theory is derived for a binary system using an off-on signal with energy detection and with equal a priori probabilities for the two signals. The interference actually present is B in the range \(0 \leq B \leq A \). Hence B is the strategy parameter for nature.

Let the communicator use a decision rule \(d_c(x) \), with c as his strategy parameter. With \(d_c \) equal to 1 when the decision is mark (signal) and \(d_c \) equal to zero when the decision is space (no signal), the payoff is

\[
P(c, B) = \frac{1}{2} [d_c(1 + B) + 1 - d_c(B)]
\]

If nature uses the mixed strategy of distributing B uniformly from 0 to A, the expected value of the payoff is

\[
E[P(c, B)] = \frac{1}{A} \int_{0}^{A} \left(\frac{1}{2} [1 + d_c(1 + B)] - d_c(B) \right) dB
\]

which reduces to

\[
E[P(c, B)] = \frac{1}{2} + \frac{1}{2A}
\]

where \(d_c(x) \) has been taken as 1 for \(A \leq x \leq 1 + A \) and equal to 0 for \(0 \leq x \leq 1 \).

(Continued on page 18)

on problems of various sizes using the "gradient projection" method for convex programming. Solution times were of the order of two or three minutes even for problems of large dimension.

A. S. McAllister

March 1, 1963
ASSISTANCE TO ELECTRONICS FIRMS
FOR BUSINESS INSURANCE PLANNING

WEN BROWN, M.B.A., Stanford.
Eight years' electronics experience.

- Profit Sharing
- Pensions
- Deferred Compensation
- for Executives
- Group Hospitalization and Surgical
- Group Life and Accidental Death
- Weekly Payments for
Sickness or Accident
- Major Medical Coverage
- Disability Income
- "Split-Dollar" Plans
- Key Man Insurance
- Stock Redemption
- Business Continuation
- Sole Proprietor
- Partnership
- Corporation
- Estate Cost Reimbursement
- Salary Continuation
- Personal Estate Planning

Electronic Engineers and Scientists

Drop in for a free ABACUS

and learn about the opportunities for career advancement with our many client firms on both the West and East Coast.

(Companies pay the fee, of course.)

PROFESSIONAL AND TECHNICAL RECRUITING ASSOCIATES
(A division of the Permanent Employment Agency)

825 San Antonio Road
Palo Alto, California
DA 6-0744

This transition period may be extended for an additional period of up to one year by the IEEE Board of Directors. During this transition period, members of IRE at the time of merger will receive only the PROCEEDINGS, and members of the AIEE at that time will receive only ELECTRICAL ENGINEERING. Members of both institutes at the time of merger, and new members of the IEEE, will receive one of these two publications at their choice. Any member may subscribe to the alternative publication.

The policy to be followed subsequent to this transition period will be the subject of intensive study by an Editorial Committee to be appointed by the IEEE Board of Directors immediately following the date of merger. The objective of this study will be to devise policy and procedures to satisfy the needs of the IEEE membership for publications of high technical quality and broad general interest.

The IEEE will publish TRANSACTIONS produced by the Professional Technical Groups (including the pres-
GUDELACE® FACT SHEET

Why Doesn’t Gudelace Break?

Every time a piece of lacing cord is tied, the cord cuts itself! Round cord does this because when you pull on it you create a cutting edge on the underside. This cutting edge will cut thru, knots will break.

Gudelace is different! Gudelace’s flat braid allows the tape to spread when a knot is tied. The tape rubs against tape but the stress is distributed evenly over the full width. There is no cutting edge created. Gudelace also has microcrystalline wax which acts as a lubricant for pressure points, but doesn’t allow the tape to slip! With Gudelace there are no slips, so knots stay tied—assemblies remain firm.

The diagram below shows what we mean:

Gudelace remains flat, there is no cutting edge, no breakage or slippage. Wax acts as a lubricant on pressure points but doesn’t allow knot to slip.

Write for free samples of Gudelace and our Technical Products Data Book. It will explain why Gudelace and other Guedebrodt lacing materials mean real economy and better profits for you.

GUDEBROD BROS. SILK CO., INC.

Electronics Division

12 South 12th Street, Philadelphia 7, Pa.

West Coast Office: 2833 S. Olive St., Los Angeles 7, Calif.

Visit Guedebrodt Booth #4032 at the IEEE Show

If you are interested in:

- Multichannel FM Telemetering Systems
- Sweep Generators or Frequency Meters - linear or logarithmic
- Frequency Converters and Multipliers
- Parametric Amplifiers
- Phase Shifters
- Phase Stabilizers

Then you will be interested in the advanced designs possible with the VARIPICO

CALIFORNIA EASTERN LABORATORIES, INC.

Sales engineers and importers for major Japanese suppliers · 801 Mahler Road · Burlingame, California · Phone 697-6670
Carl A. Stone Associates, Inc. has been appointed as Exclusive Sales Representative in the entire State of California

By AD-YU Electronics, Inc. Passaic, New Jersey

Specializing in PHASE METERS Direct Reading in Degrees
0.001 cps to 18,000 mic
Accuracy 0.05° or 1%

DELAY LINES Audio to Microwave
0.01 us to 200 ms
Variable Tapped Fixed

800 No. San Antonio Rd.
Palo Alto DA 1-2724

Advanced Work in H-F Communications

Granger Associates specializes in advancing h-f communications technology. The emphasis is on proprietary development. Excellent opportunities exist for engineers with experience in

IONOSPHERE SOUNDERS
RECEIVERS
TRANSMITTERS
FREQUENCY SYNTHESIZERS
TIMING SYSTEMS
VIDEO DISPLAYS

Please contact our Personnel Manager. Local interviews by engineering staff are possible.

Granger Associates
974 Commercial Street, Palo Alto, Calif. DAvenport 1-4175 (Area Code 415)
an equal opportunity employer

BUY A LINDGREN DOUBLE ELECTRICALLY ISOLATED ROOM
HELP YOUR ENGINEER USE HIS TIME TO THE BEST ADVANTAGE

For information write Dept. EL13

ERIK A. LINDGREN & ASSOCIATES, INC.
4515-17 N. RAVENSWOOD AVE.
CHICAGO 40, ILLINOIS

MORE PGIT

If the communicator's freedom is reduced by requiring him to use a threshold decision rule and integer values for that threshold, then the optimal strategies are a uniform distribution for nature and equal probabilities for the thresholds 1, 2, . . . , [A + 1], the largest integer in A + 1. In this case the expected value of the payoff is

\[E(P(c,B)) = \frac{1}{2} + \left\lfloor \frac{1}{A + 1} \right\rfloor \]

Dr. Root stated that this minimax approach can probably be extended to detection schemes other than energy detectors. Some of his earlier work on this problem was reported in the March 1961 issue of Information and Control.

After receiving his Bachelor's and Master's degrees in electrical engineering, Dr. Root received his Ph.D. in mathematics from MIT in 1952. He was associated with MIT and Lincoln Laboratory until assuming his present position as professor of instrumentation engineering at the University of Michigan in 1961.

CHARLES H. DAWSON
events of interest

May 2-3—4th Nat'l Symposium on Human Factors in Elec. Marriott Twin Bridges Hotel, Washington, D.C.

BALLANTINE True RMS VTVM

Measures 10 µV to 320 V regardless of Waveform

Frequency range, 5 cps to 4 Mc (3 db bandwidth 2 cps to 7 Mc).

Voltage range, 100 µV to 320 V (10 µV to 100 µV as null detector).

Individually calibrated logarithmic voltage scales result in uniform accuracy of % of actual reading regardless of whether it is top or bottom of the scale.

Large 5 inch meter.

Measures signals having crest factor (ratio of peak to rms) as high as 15.

Uses time-proven diode matrix to produce square-law response with long-time reliability and accuracy—no thermocouples used.

Write for brochure giving many more details

Model 320A
Price: $465

Panel color to customer specification at additional cost.

Model 320A-S/2 Price: $485

Since 1932

BALLANTINE LABORATORIES INC.
Boonton, New Jersey

Check with BALLANTINE FIRST for Laboratory AC Vacuum Tube Voltimeters, regardless of your requirements for amplitude, frequency, or Waveform. We have a large line with additions each year. Also AC-DC and DC-AC inverters, calibrators, calibrated wide band AF amplifier, direct-reading capacitance meter. Other accessories.

Write for brochure

Represented by Carl A. Stone Associates, 800 North San Antonio Road, Palo Alto, California

march 1, 1963
We need engineers right now! ... think about us!

We're a small, energetic, and congenial company where the growth is rapid but planned and controlled for the long range. We specialize in the design and manufacture of propri- etary electronic instrumentation for control and data systems. Our management represents the best in training and experience.

Design Engineers

for solid-state circuit design to work on special analog and digital data instrumentation. Each assignment is carried through from preliminary design to production.

Product Development

creative men wanted for continued R & D to expand our product line.

Salary, benefits, and participation commensurate

Write a letter or send a résumé to

VIDAR CORPORATION

2296 Mora Drive, Mountain View, California

An equal opportunity employer

The section

MEMBERSHIP

Following are the names of IEEE members who have recently entered our area, thereby becoming members of the San Francisco Section:

G. B. Appleton
R. H. Austin
R. R. Austin
R. R. Barber
S. H. Black
W. J. Blinn
A. Borken
F. L. Boyd
A. Brandi
R. W. Carpenter
M. B. Carter
K. F. Crook
A. De Joseph
A. L. Eykholt
K. Haase
M. R. Heembrock
H. Hennig
J. L. Herrero-Urgel
J. W. Jensen
J. H. Jones
H. G. Kitstofurian
W. A. Klingman
J. A. Koch
D. S. Lander
B. J. Lawrence
J. Leong
J. N. Lepper, Jr.
F. P. Lockwood, Jr.
D. H. Loescher
D. N. Lyle
G. M. Masters
R. W. McConnell
J. A. Mellenger
G. E. Merer
W. F. Monks, Jr.
L. L. Moon
W. Nickel
P. C. Prehn
H. E. Rauch
R. A. Severns
J. M. Speiser
A. N. Strickler
J. A. Tellefson, Jr.
A. Tannig
R. L. Venezky
F. D. Weekes
J. G. Wirt
W. L. Wise
B. H. Wolf
Chung-Hoi Wong
M. W. Woodruff

new product capsule ad

VELONEX PULSE GENERATOR

Wide-range general-purpose solid-state pulse generator for pulse circuit development, with frequency range from 100 cps to 5,000,000 cps, simultaneous positive (+) and negative (—) outputs at two impedance levels. Positive output source is 5 ohms, and negative source impedance is nominal 50 ohms; no DC output in any mode.

Output versatility is assured with a wide range of accessories such as:

• Single pulse generator
• Mixer assemblies
• Plug-in impedance matching and DC isolation transformers
• Rise and fall time control
• Nanosecond transformers

Other standard features include low source impedance sync output to assure a positive sync pulse of 5 volts; 5—nanoseconds regardless of loading or frequency, and a one volt rms sine wave is necessary to drive the pulse generator externally to 5 megacycles. Price $1180.00, delivery 4 weeks.

VELONEX, A Division of Pulse Engineering, 560 Robert Avenue, Santa Clara, Calif. Phone 244-7370 TWX 408-287-6570

INDEX TO ADVERTISERS

AD-YU/Carl A. Stone Associates
Andrew Corporation
Ballantine Laboratories
Brown, Wen
California Eastern Laboratories, Inc.
Communicon
Forum Personnel Agency
General Capacitor
Gertsch Products, Inc., Inside Back Cover
Granger Associates
Guadabro Bras, Silk Company, Inc.
Hughes Aircraft Company
Kay Electric Company
Kittelson Company
Lindgren & Associates, Inc.
National Press
Neely Enterprises
Professional & Technical Recruiting Assoc.
RHG Electronics Lab., Inc.
Shielding, Inc.
Stevens Manufacturing Company, Inc.
Tech-Ser, Inc.
Taktronix, Inc.
Tung-Sol Electric Inc.
VeloneX
Vidar
Westinghouse Electric Corp.
GERTSCH

WWV AND VLF STANDARDS RECEIVERS

— provide rapid calibration checks on frequency and time standards... frequency comparisons against carrier-stabilized frequency transmissions—with high accuracy.

High-Frequency Standards Receiver — an all transistorized superheterodyne receiver designed for reception of WWV and other high-frequency standard transmissions. Ideal in precision time measurements, reception of standard audio frequencies, pulse code modulation, and radio propagation notices transmitted at these frequencies. Local frequency standards comparisons accurate to 1 part in 10^7. Operates from either a 115/230-volt power line, or a 12-volt battery. Send for Bulletin RHF-1.

Phase Comparison Receiver — used with local frequency standards accurate to 1 part in 10^7 or better. Instrument utilizes the propagation stability of low-frequency waves, allowing comparisons to an accuracy of 5 parts in 10^9 to be made in one hour. Higher accuracies, proportionately longer. This all solid-state unit also includes a built-in servo-driven, strip-chart recorder. Front-panel frequency selection permits rapid switching of up to 4 frequencies within the range of 10 to 100 KC. Send for Bulletin PCR-1.

GERTSCH PRODUCTS, INC.
3211 S. La Cienega Blvd., Los Angeles 16, Calif. • Upton 0-2761 • Vermont 9-2201
Northern California Office: 794 West Olive, Sunnyvale, California, REgent 6-7031
Assure System Compatibility

REDCOR

LOW & HIGH LEVEL MULTIPLEXERS

Available for "off the shelf" delivery, Redcor standard, Low and High Level Multiplexers offer users unusual system flexibility. Series 606, 608 and 625 Multiplexers feature Input Voltage Ranges from ±10 millivolts to ±10 volts. Control signals, size compatibility, power requirements, and switching signals of all multiplexer modules are identical. All models are available in standard rack mount chassis, complete with internal power supplies and amplifiers.

Redcor's complete line of compatible components for data acquisition systems also includes Hybrid Differential Multiplexers, DC Differential Amplifiers, Single Ended Dual Channel Amplifiers, Wide Band Low Level Amplifiers, Low Pass Filters, Precision Voltage Reference Sources, Analog to Digital Converters and Digital to Analog Converters.

For detailed information on Redcor precision components and systems engineering in data acquisition and system control, contact...

Kittleson Company

Kittleson Company provides Engineered Representation for Users and Manufacturers of Electronic Instruments and Components in the following listed product areas.

COMPONENTS:
- Crystal Filters, Discriminators, etc.
- Gear Heads, Reducers, Clutches, etc.
- Microwave Components
- Nuclear Batteries, Timers and Packs
- Panel Meters — Control Meters
- Printed Circuit Boards
- Semiconductors
- Servo Motors, Tach., Servo Assys.
- Snap Action Switches

INSTRUMENTS:
- Acceleration Switches
- Amplifiers — Computers
- Digital Equipment — Servo Analyzers
- Electronic Filters — Power Supplies
- Gyro, Synchro and Resolver Test Equipt.
- Infrared Detectors, Materials, Systems
- Microwave Test Equipment
- Pulse Generators
- Range Timing Equipment
- Voltage Reference Standards

416 No. La Brea Ave.,
L.A. Calif., WE 3-7371
809 San Antonio Road,
Palo Alto, Calif., DA 6-7410
San Diego—Zenith 2-1983
Albuquerque, New Mexico—
Enterprise 664
Alamogordo, New Mexico—
Enterprise 684
El Paso, Texas — Enterprise 619
Phoenix and Tucson, Arizona—
Enterprise 7527

416 No. La Brea Ave.,
L.A. Calif., WE 3-7371
809 San Antonio Road,
Palo Alto, Calif., DA 6-7410
San Diego—Zenith 2-1983
Albuquerque, New Mexico—
Enterprise 664
Alamogordo, New Mexico—
Enterprise 684
El Paso, Texas — Enterprise 619
Phoenix and Tucson, Arizona—
Enterprise 7527