
Steven W. Conley
University of Arizona

Introduction The Assembly Language

With the tremendous number of microprocessors on the
market today it is becoming increasingly hard to find cross

assemblers that run on the particular in-house computer
system or timesharing service available. Since most
minicomputer systems and almost all timesharing systems
have BASIC interpreters or compilers available, this seems

to be the most reasonable language choice for writing cross

assemblers. It also has a very good trace and debug facility,
which is especially useful if you are writing medium-long
programs, such as cross-assemblers.

Another advantage of a cross-assembler written in
BASIC is the ease with which options can be added. For
example, one of the new microprocessors by MOS
Technology, Inc. is "pin-compatible" with the M6800 by
Motorola, but it is not "bit-compatible." In other words the
mnemonics like TST must be assembled into two different
bit patterns for the machines, but they both execute
similarly. Thus, if you were using the MOS Technology
device as a second source for Motorola (or vice versa) you

could not use the same ROMs. With a cross-assembler such
as described here, a switch could be included which would
allow the same assembler to generate code for both
machines. This article presents a technique for writing
cross-assemblers which is both modular (as far as possible in
BASIC) and can be used for many different microproces-
sors with little modification.

32

To begin with we define an assembly language. This does
not have to correspond exactly with the manufacturer's
suggested assembly language-and in fact may be better in
two ways: human readability and machine readability. For
example, many assembly languages define a statement label
as beginning in column 1 and terminating with spaces:

LABEL AND R1,ALPHA

This works fine until the programmer forgets the spaces in
front of an instruction:

AND R1,ALPHA

All the assembler can do in this case is to assign AND as the
label for that location, and upon seeing an "instruction"
Rl, rejecting the statement. Alternatively we can define a
label as terminating with a colon:

LABEL: AND R1,ALPHA

Now there is no ambiguity and we can correctly "parse"
the statement. There are many other examples. The
important thing to realize is that the manufacturer's
assembly language is not sacred, and many times can be
improved upon or at least changed to match the assembly
languages you may be using on other machines.

COMPUTER

1, I .- ..

Table 1. Assembly language for IMP 16L

1. Since the IMP16L is a 16-bit machine, we will use a base 16 radix (hexadecimal. This radix when used as an
expression will be preceded by a "#." Decimal radix numbers will have no # character.

2. Symbols will be six alphanumeric (A-Z, 0-9) characters maximum and will be followed by a colon, and will be used
as labels. They can be assigned values by an "=" followed by an expression.

3. Comments will be any graphic (printable) characters and space preceded by a semicolon.
4. All operator mnemonics will be three or four characters long, terminated by a space.
5. All operands will be separated with commas.
6. The current location counter will be indicated by "."
7. Macros or assembler directives will be preceded by

For example, here is a section of assembler code:

A X, ()
ACI

.I E'LNSAX,

1.) R1: T **

0
....

:3*2)

9

.S)T oC2O Y I (e.
xI

F' t.J S Il
RTS

T7MF:' : * w()I:i
X .lJ+ . W C:) R: I:XLO)Cl : . w(RI

. WOFRI:I
* ENI:

AC(d :1.
: E:N Y T '2

:3

()
STAI...TNK
SFr^FRr

s.t a r t. c, cr.de a3t, :1 c.,5 -t<3 J..'i. r- 1(O
*th i'.Si.1;S 3 (:' :ii-T rit ori :S lini
Y def ' i ri(et f 'C rJ T .T' .i-? J .S ..

3 WC c:'coi..r.id f I. 1.L t enh Iyi L t h 1:4 i. .; t,(>
(C rT ev c? r :)li sC C r :::C; TN :I. y1 ND."'..

vis3;eC:i.:i.J. bI 1,11. j. S ihre' 0
ei T r i..i , lt e rini[-I. (3bi i. rn T' c.1r',;es ,c) P, '-> aIt.I'; WC)T,di

J. a d :: tr r, ny ii e' (T C) r, V :) c, n -1, :1 ic XL..I 0(C2C"
YK l ia i C):, :iled:i.n te wi. th'i:C l rik

CiC2) Y LOT e(ilorhi.AC §rite lc. :1.'et,n1r:rit;d1 t,o Li:v A'I-.2
Ti iii--llJt- (*t. j .e-. edi.Ti 'ts1 r t;t; j. n5,)

LibT rncLifI :.riJte r'T'Ti.JPvt erieLil.e on to T2
t- I..i i -A(Cl (:) nI. 1 ':c) t-hee.; t- Elc..

re ('i i iT' -l*Ti S.? T'Jt 1.T ,C :I.J11e) t,i) -the* ddT ess

c5r3' t) e stL? aXc k. +t3
, e(! r v e :L) 't,(tJ) c.3 r-n d "; *t() T'V a . Z e TC) C:i1-1it

3' T'se rve ae t-h T' w thh the v (.ToW (' ... reN i I. t
T('Tive a word with the addT 'ess S*tT(t i i.ti,

Using the National Semiconductor IMP16L as an
example microprocessor (because of its extensive and varied
instruction set), this discussion will point out a few
problems with writing assemblers which are not en-
countered in simpler machines such as the Intel 8080, or
the Motorola 6800. An assembly language for the IMP16L
is defined in Table 1.

The Host Machine

For the purposes of this paper the minicomputer for
which the cross assembler is written is a PDP1 1/40 running
the RT1 1 operating system. RT1 1 BASIC is very similar to
DEC10, HP, and PDP1 1 RTSTS BASIC, to name a few. The
only real requirement of the BASIC is that it must have file
manipulation and string manipulation. The reason for the
latter is obvious, but the file manipulation may not be so
obvious. It is required for two reasons: the cross-assembler
family described here is multi-pass; and on small main
memory machines the cross-assembler may have to be
"chained" in order to. have enough room for large symbol
tables. Most BASIC dialects with file manipulation also
have the CHAIN feature which is known to FORTRAN
users as overlays.

In the following tabulation several features of the
RTI 1/BASIC are explained for those not familiar with it:

used to separate statements on a single
hlne

October 1975

$

&

last character of a "string" variable
name
concatenates string variables
used to indicate file number

POS(string,char,n) returns position in string of 1st occur-
rence of char, starting with nth charac-
ter in string.

SEG$(string,m,n) returns the segment of string from the
mth character to the nth character.

TRM$(string)
VAL(string)

removes trailing blanks from the string.
considers the string to be a numeral
string and returns the value (can include
"-" and ".")

An interesting feature of this and other BASICs is the
ability to form the IF-THEN-ELSE construct, even though
ELSE is not a feature of the language:

10 IFX>=30THEN20\X=30\GOTO25
20 X=X+10
25 continue

This is equivalent to: IF X>=30 then X=X+10
ELSE X=30.

One limitation of RT1 1 BASIC is its lack of integer
variables. This would serve to reduce the core requirements
considerably in a string-processing type program.

33

Figure 1.
Disk file initialization
section of cross-assemblers

(0O
:10

I130
140
:1.50
L60
170
1 30
19(

The Initialization Section

The first section of the program asks for the source
program name, opens the file as "name.IMP," and opens
files 2 and 3 as "name.TMP" and "name.LST." Any
options are also requested at this time. If CHAINing is used,
this might be the extent of the first overlay (see Figure 1).

Next we initialize the hexadecimal conversion table, the
permanent symbol table, and a few variables. This might be
the extent of the second overlay (see Figure 2).

Lines 20000-20010 set up a hex-ascii and ascii-hex table.
Lines 20030-20050 set up and initialize the opcode
permanent symbol table. Notice that the opcodes are
grouped according to type-e.g., one-word versus two-word
instructions. Lines 20300-20320 initialize the user symbol
table, the first symbol being the "." location counter. Ti$,
is the string array where the symbol names will go and T I is
where the symbol values will go. Ml is the maximum
number of symbols, and P3 is the next available slot
pointer.

Useful Subroutines

In Figure 3 we have a listing of the general subroutines
for Pass 1 of the assembler. These were written with speed
of implementation and ease of debugging rather than speed
of execution in mind. For example, the symbol table search
is linear rather than the normal "hash" table search.
Because of the modularity of the subroutines, faster
routines can be substituted for the major bottleneck parts
of the code after the assembler is running.

Subroutine 10000-10090 is an internal-binary to
hexadecimal-string conversion routine. A check is made for
16-bit overflow (the IMP-16 is a 16-bit machine). Step
10035 is a "trick" to form the 16-bit two's complement of
a number represented internally as a negative floating point
number (standard BASIC representation). The hexadecimal
string is formed by concatenation on the right of an entry
from the hexadecimal table indexed by the integer part of
the result of division by a power of 16. This shows how a
routine can be written independent of the host-computer
word length, as long as the mantissa of the floating point
word exceeds 16 bits.

Care should be taken in the documentation of BASIC
programs because all variables are global. This may not
appear to be a serious problem at first, but when the
program length exceeds approximately two pages, the
chance of choosing the same variable again is very high,
especially when limited to a single letter followed by a one

34

PR.IT NT 'IMFiM 16 CROSS SSEMBTiL..ER cSTEV1:N COCN.Y'NE
Rl:1: NT "SOURC"E F'lL.:I.E` \: NF:UT 1::Ls$
PR :1: NT "OPT 1)NS :1: NF:.lT A$
F2 F:-l. I'J:MP"
1:7 3 $ =1:7L t$'STMP
F4*$::.:: 1$ S H v 1

:ll:F.N F:2$ AIS F I.I. 2'

COFEN F34$ FO R O ASTF:TS 1 :1: .I: 314

digit number. It becomes necessary to document all internal
"scratch" variables:

Subroutine 10000-10090
FUNCTION:

INPUTS:
OUTPUTS:
SCRATCH VARIABLE:
GLOBAL EFFECTS:

internal binary to hexa-
decimal string conversion.
Bi is input binary string.
HI $ is output hex string.
I,Xi,X2,X3
if input > 65535, L4$ =

"C", and HI$ = 5 blanks.
SUBROUTINES CALLED: none
GLOBALS USED: previously initialized

BIN-HEX table: H$

Documentation of this sort will be very valuable to both
your successors and yourself after 3 months or so.

Subroutine 10100-10190 is a hexadecimal-string to
internal-binary conversion routine. It has error checks for
illegal characters and more than 4 hex digits. Subroutine
10200-10260 returns the value of an operand-either
symbol, decimal, or hexadecimal. If the operand does not
start with #,-,0-9, then a linear search of the symbol table
T1$ is made. If the entry is not found, the index T3 will be
equal to Ml. Subroutines 10300, 10400, 10500 and 10600
are self explanatory once you see that C2 is the current
character pointer in the line. Subroutine 10700-10850 sets
the next operand, expecting it to be defined. It also checks
for a comma after the operand, and sets a flag E=1 if it is
not there.

Pass 1 The next section (Figure 4) is the "first pass" of
the assembler. The flow chart in Figure 5 helps to explain
Pass 1 and its relation to the other passes over the source
code. The function of the first pass is to produce a
"symbol" table and an intermediate source file. The symbol
table contains all user defined symbols and statement
labels. The intermediate file has the following structure:

LOC CODE FLAG ORIGINAL SOURCE

The LOC is the memory address (sometimes called location
counter; hence LOC), CODE is the index into the opcode
table, FLAG is a special statement indicator, and ORIGINAL
SOURCE is the untouched' source line. To generate the
LOC, it is necessary to know the word length of each
instruction. This- is one of the reasons for the opcode table
arrangement. The CODE makes Pass 2 faster by allowing a
branch on that value to an instruction group specific

COMPUTER

20000 DIM I$ (15:) \ I::FC)R:r :O TO) :1.5 \ READ:' Hl(;tl) ' N Xl .1
2~001.0 DA'TA u0I9U:lH,Hl'2)u39il 4u,l4U5uyU"6,Uyh7/ IUH B,Ivly, t' : I.

20030' M2e')::: 7 t)
2 4()4 : :,'' ,M :) 1. $ (7:1. ')2(7:1
20050) FOR I ::) 'TO 7\ REND (:1:1* (:1:) : ()N NEXi .1:

20060
20065
20067

DATA RAl 1 2288 1X.I' L 2416 Y ' I. r n FL
DATAM RAND I 12419
REM 0-4 *****

20070 D:IATA ' ROI... 2258 " R 1I... 23 H "23Ht;

20075 RIEM 5-8 ****

2008() DATA A l'Z Uy1. 8432 "HL.. '1 " :1.9456 CHtA' " y2' 4'.30()
200835 RE:-'M 9'-- II***

20090() I:ATA "1::'J3..1 :16384 ULL.." :1.7408 " DXAHRA ::1
20095 RE"M 1.2-14 *

201-OO
20105
2.0107

DATA 'L..D' y 32768 y H ...I:1 " y 3678 I6 " T" 36 "T y 409 ()9E60 T ' y45056"% " :1D2)49 1.

DATA 1r S.)B' Y 53248 "S3 H y 57344 S(KNE1: :1 44()
REM 15.. 22 ***

201. 10 DIA'TA " ANDX Y 24576 YYC)R ": 2662'.)4 Y " ISKAZ'." 286./ 2
20115 REM 23 ...25 ***

2012.0
20125
2.0127

DATY-A HJMP' n,8E 92 .JMF y9921.6 U J8R " :1.02 " J y1H1U1 26 ()" " !,1 | /)2)
DATA ":z y31744
RF-.M '26-31 ***

201.30 DA'TA 'H80 ""y4096
20135 REM 32. ******

20:1.40 DAtrA SIL ,2043FF1.(3 u 2176

20145 REM 33--34 ***

20150 DATAJ RIN ' 1024 T1 J3 'iI i1 A) H
20155 R:tEM 35-- 38 ***

20160 DATA ' FSHF , 1 PHJI.LF ! , 64() , H U 0" N 124:L7 18 t.
20165 REM 39--43****

20170
20175
20177

DATA " SET-E in :1824 y CFER T n " 9 14 5 4() p O5l:MIS :,:.'1 :1u y 11) 1r 1*Y
R<EM 44-50) ***

20180) ATAA JI NT pY :I312 Y "MF'F'M:PF 28() Y28 ' l;:JSR1F " 7 68E9s, " JSR3 T " Y 896
20185 REM 51--54 ***

Figure 2.
Initialization section
of IMP-16 cross-assembler

20197
20200
20,210
20215
20217

REM TWO WORD. FROM HERE. ON
DMATAMIMF'Y' 11529 '1J:V' 911689 'IuAX:1LI.D' 9.1.1849 'DHlJD.Ĵ'| :1)200
DATA 'LDB' Y1216v'LL-B 912:169 'L.RB' s121.6, 'SrlD' 9:1.2329 '51.11 ' 1232.:
DATIA 'SRB'1:.232
REM 55-64 ***

20220
20225
20227

DATA '.WORD'v 65,'. BYTE' ,66'".ASC([I' Y67
rDATA ',LOCAL'Y68,',NAME'Y69Y'.ENLID'Y7(
REM *********

20300 M1=300 \ DIM T1$(301),T1(301.?
20320 T1$(0)='.' \ T1(O)=0 \ P31 \ T1(M1)=0

subroutine. The FLAG is also an addition to speed up Pass
2. It indicates comment only lines by having the flag equal
to "C." Symbol assignment statements are also converted
to comments after they have served their purpose..

In Figure 4, statements 210 and 220 are the source input
statements. When the end of file on the source is reached, a
branch to Pass 2 is made. Statement 225 is simply a pacifier
for impatient programmers on slow timesharing systems. It
prints a period on his terminal each time a line is processed.
Figure 6 is a flowchart of Pass 1.

October 1975

The important variables in Pass 1 are:
L2$ LOC field in the output temp file
L3'$ CODE field in the output temp file

L4$ FLAG field in the output temp file

T1(0) memory address (location) counter
C1 character pointer

The errors checked for are: multiply defined symbol, no
colon after label, symbol table overflow, undefined opcode,
and various character errors detected by the subroutines.

35

REM BI: NARFY TO HEX C: NVERTJ1:1 ON YB :1. I S B:1:NARY 1:1. it, 1J.:.:
I F B:.:1:: 65535 THlEN :10080
1 $:H::N \ X 3::::B:L

:r F; X3:::.() TII: N 1. 003)3 \ X3-6553.65'35-+-X3+ 1
F: R I.:T 3 TO 0 S TEF::-I."
X1- 1.6"'1' \ X2: NTr (X3/Xi) \ X3:f: ;X3 X"*X1.
H1 $:=H 1$ &I--I$ (X2'C)
NElXT I
RETURN
IFR:N:T"C)TVF IN B INH.E..X \4 $ (" \ :1-::1.
RETURN

REM H-IEXAAEC:EC-IMAi.. TO B I:NAFRY CO0NVENERSI)JON
X:L:: LEN (Hi$) \ I=:: O

IFI:: X.t:: 4 TIHEN 101.8()
FCR I=() O (xit) \!31$-:SE(3$ ([I:L$ X iI ,Xl.:1)
F-OR I I =0 TtJ 15
IF: Hl(11)=S1$ THEN 10170
NEXrT Il \ F'RINT UIl.L..E:GL. CHAAR IN IHEX NUMBER.k.I
BL=B-+I1*(16I'. \ NEXTI I \ RETURN
PRINTr:4 HEl.X DIGITS'
L4*-'Co \ B1=O \ RETURN

REM SEARCH SYMBOL TABLE FOR ELEMEN'T
T3=0 \ S4$=SEG$(S2$lp1)
IF S4$::>.9" THEN 10210 \ IF S4$::>=Non
IF S4$<2::.: '- THEN 10206
V1=VAL(S2$) \ RE'TURN
RETURN
IF' SE(5'$(S2$A1lJ)*:::>'*' THEN 102:10.
H1$=SEG$ (S2$ p2 y256) \ GOSUBl 1.1.00 \
FOR T3=0 ro Ml:
IF S2$=r1 s (T3) THEN 10250
NEXT T3
V1=Tr: (T3)
RETURN

\ GO) TO) :1. 0:1 90

S2$y RETURN VALUJE VI.

THlEN 10204

V:1.:.1 IE:TRRN

FRE:M SEARCHIA PCFC'0 ElE TABL.E FO OF'(3COrDE. S2yF$ l T RUN NlUM BER 1
FORF I 1O TO M2
IF S2$ O:l $ (I 1) THIEN 10360
NEXT II
RETU(RN

REM F INE' CHAAR BEFORE: NEXT BLANK OR T^AB
GC.OSUB 10600 \ C:'12.
RETURN

R:EM L.O)0K FOR NE:XT CHAR E:XCEFT TBI:ABR IAC E
X$=SE:IJ$ (L. Y C2,3C2)
IF C2':.?:80 TIHEN 10590
I F X$:::: THEN : 0$30 \3 -C2:='C2 :1. \ (30 TO 05:10
IF X$: THE:N 10590 \ C(:.2.2+:l \ (30 TO 105:I.()
FRE'TUJRN

FRE:M L OOK FOR IST T'AB Qj:R SPAEfl.
X$ SE:G$ (l...$ C2, C2
IF' X$:. THn EN I10690
IF X$:" TIIElN 1 069(t \ t:. :1\ GO) TO :1.06:1.0
RETURN

RE:M GFET NEl::X T SYMBOL)L AN:I VALUEJC 1 lS P: (:1SI: NTEF y

E1=() \ CrI'C.:)
GOC)SJBJ BL)0600 \ C 3:::: X2\ REM FI: NX: l AS T FL.A C.FE'
C2:C 1
IF.SE3G$...$I C C)C2 THEN :1.760 \7:6F:(':'F(:.3
C2 C 1 \ (30:) TO :1. 0(740

\ C2:C-3
C2=:;C2+ 1 \ S2$:-SI.. (1C$L..$Y :I.Y('2---2) \ G(OSU.B:.B :1. 0(.'.0O

IF T3:::::Ml THEN :10.8350
PRINT "UNDEFINE:1 SYMBOL:'1-"S2$yl $
V1::= 0
RETURN

IllEN :1. 0,75()

1 00()(
1Q00:10
1 0020)
:100'25.
10030
: 0040
10050
:L 0060
10(70
1 (080
10090

10100
10110
10120
1.0130
10140
10150
10160
10170
10180
10190

10200
10201
10202
10203
10204
10205
10206
10207
10210
10220
10230
10250
10260

1 030()
10310
:10320
:l 0330
10360

10400
1041.0
:10460

10500
10510
10515
1052.0
10530
10590

10600
:10610
:10620
10630
10690

10700
107:L0
1 072()
10730
1 074()
10745
10750
:10760
10770
1.0780
10790
1 085()

Figure 3. General crosswassembler subroutines

36 COMPUTER

210
220
225
230
240
250
260
265

270
280
285
290
350
355
360
370

IF ENDi *2 THEN 30000
INPUrT #2:L.$
P'RINT '.'"
C10 \ L2=T1(O) \ L..3-O \ L..4$:::'n
L$=TRM$ (L$) \ L$ L..$ & ' \ X'hS $ (1$:1. :1.)
IF X$= TFHEN 370
IF X$<:'" TH1EN 265 \ C2:1. ic\GO TO 55()
IF X$:::: TTHEN 270 \ C02: 1. \ (0 TOl 5 i()

C2=POS(l$P"': *'p1)
IF C2:: 0 THEN 500
02=1
GOSUB 10400 \ 2$=SEG$ (L..$ YI.YC2) \ (30'SUB 01.A200
IF T3=M1 THEN 390
IF T3=0 THEN 390 \ FRE'M I.#E. A H.'
PRINT "MULTIPLY DE:F INEEt SYMBO:.L.:' S2$i
L4$=-C" \ (3O TO 1000

390 IF SEG$(l $lC:2+2y,t2+2)= ' ..THE1N 420
400 PRINT 'NO : ?' L.$ \ (30 TO 370 \ RE:M TREAT AS CIOMMENT

GOSUB 10400 \ S3$=SEG$(L.$PCl C2) \ C2:02(+'2t4
GOSUB 10700 \ REM EVALUATE SYMBOL.
IF S3$.:':>:',' THEN 460 \ T:(():)V1l \ TO 370
IF P3:>:M1 THEN 463 \ Tl$(P3)=-S3$ \ T:l (F'3)::V \ F'3::::P3F1I \ G: 1:1 TO 37()

Figure 4.
Pass 1 of IMP-16
cross assembler

463 PRINT "SYMBOL.. TABLE OVERFL.OW: 's3$ \ STOP

500 T1$(P3)=SEG$(L$Y1YC2-1) T1(FP3)T 1((3F :3 1:F34 :1 2CA2+1.
540 REM START HERE L.OOKING F'OR OPCODEK
550 GOSUB 10500 \ IF S2$=U''" THEN 370
620 C1=C2 \ GOSUJB 10400 \ S2$=SEG$(L.$*0ClY02) \ (30SJUD 1.0300

655 T1(O)=T1(0)+1
657 IF T1(0) ::65536 THEN 660 \ TI(0O)o:
660 IF I1<>M2 THEN 670 \ PRINT 'UNI:DEFINE:I OFOOE:l tS2$
665 L3=42 \ L4$=' \ GO TO 1000

670 IF IL1:55 THEN 690 \ IF .Ll::64 THEN 690 \ T1(0) ::T1:(0)+
690 L3=I1

1000 BVl=..2 \ GOSUB 10000 \ L.2$:::H:l$

1030 B1=L3 \ GOSIJB 10000 \ L3$=H1$
1060 P$=SEG$(L2$' L&L3$&'" '&L.4$&'

1080 PRINT t3:P$ \ GO TO 210

Figure 5.
Flow chart of
cross-assembler

October 1975

420
450
455
460

37

A

Read statement, initialize pointers

I

Test 1st character1

J alpha numeric

Test for ":"
following
symbol

blank or tab

Store label
with LOC as
value in
symbol, table

yes

Figure 6. Flow chart of Pass 1 of IMP-16 cross-assembler

no

Get opcode and find its index in
the opcode table. Increment LOC
once if single, twice if double
word instruction. Set flag = blank

5

Convert LOC and opcode CODE to hex, form
output temporary file line and output it.

A

Pass 2 Pass two is the most difficult of the three passes.

This is where the code becomes instruction-specific. For
lack of space, only one type instruction will be followed
through here. The entire BASIC code for Pass 2 and its
associated subroutines is in Figure 7.

The instruction we will'follow through is a "SKAZ"-
skip-if-accumulator-ze'ro.' In Pass 1, we assigned it an index
of decimal 25. The temporary file entry looks like this:

0100 0019 LABEL: SKAZ ACO,LOOP3 ;goto loop 3 if ACO=O

38

We enter the BASIC code at line 30100. We set X$ equal to
the flag which is blank. Next we set H1$ equal to the
CODE field, convert it to hex, and in line 30211 we

position the character pointer Cl after the opcode 'and a
tab or space (30213). Statements 30215-30218 position the
character 'pointer to the first character of the operand field.
We then branch out to the different opcode groups. From
30230 we go to 30640. We then call a general subroutine to
get the register number. This subroutine 10900 verifies that
the -value of the symbol indicating the register is within the

COMPUTER

,. IV
I";

I

no l:i ": it

Store symbol
and value in
symbol table

r

I

L

v

GOSUJB 10700
IF VJ.1:0 THEN 10920 \ IF V1:::3 THEN 10920
RETURN
PFRINT 'VALUE TOO LARGE FOR FIE:L-D#:' V:1.YL$
L.4$=' N
V1=0 \ RETURN

1100(
1.1010
11020
11030
11050

111'00
11110

11120
11130

11200
t 1210.
11:220
1i230

GOSUJB 10700
IF V1::128 THEN 1.1050 \ IF V1:::.127.
IF' V1*::<0 'THEN 11030 \ RETURN
V 1*2561-V1 \ RETLJRN
(30 TO 10920

(3OSUB 11i(00
IF V1::0 THEN 111.20 RETUJRN
FR INT *NEG3 VALUE IN FIE:l.-D:'SyL$
GO 'TO 10930

GOSUJB 11100
I-F V1=0 THIEN 11220 RETURN
FRINT uZEFC) FIElD VAL..UE-:'+ 1...
t3LJ) TO 10930

THE:N :1.050

11300 PRINT "NOT ENOUGH ARGUMENTS: ?,L..$

11310 L4$:" N' \ VJ(= \ RE TURN

11400
11410
11420
11430
11440
11450
1.1460
11470
11460
11490

11500
11.51.0
1 1520
111530
11540
11550
11560
11570
11580
11.590
11600
:116510
11620

1 1700
11710
11720
11-740

REM GErT ADERF MODI:E AND AMOUJNT
C1=C2'. \ V2=()
GOSUB 10600 \ C3 (:'2 \ REM F7IND SPACE
C2=C1
IF SEG$ (L$ C2Y C2)

"
(' THIEN 11.500 N IF'::::l3 THEN :1.1 460

C2=C2+1l \ GO 'TO 11440
C2=C2+ 1 \ S2$. :SEG$ (L..$CCC:. C2) \ GOSLU 1. 0200()
IF T3M::tll THEN :11700
F'RINT 'UNDEFINED:' SYMBOL..:'+'Y :)2$L..$
V1:=0 \ L4$='N' \ RETURN

S2$=SEG$($(C2- 1) \ GO)S.LJD.B 10200

IFT T3M1 THEiN 11460
V2=:V1 \ C2 C2+1 \ C1'=C2
IF S EG $(L $ tC2)CZ)'-? THSiE'N 1156. \6 IF C2:::C:Cl3 THlE:'N J1.:550
C2:=C241 \ GO 'TO 11.530
FR'INT 'NO CLOSE PAREN:' ,l.$ G3Ol TO 11490

S2$=SEG$ (L $,CJ.Y C2-l) \ GOSlUB :L 0200

IF T3=Ml THEN 11480
IF V1:::.3 TFIEN 11590 \ IF V1>::1L THIEN :1.16:1.0
F'RINT I LLEGAL I NNDlEX FRE GIS TE u,S2$ y L$
L4$=NN \ V:1=2
V1=V1*256

RETURJFN

V2=VJ 1

I1F V2:::.-255 THEN 1:1720 \ V 1-0 \ RETURFN
V1=256
RETURN

11800 S2$='m'&S2$ \ GC TO 10200

Figure 7. Pass 2 and associated subroutines (continued on next page)

range 0-3. Because opcodes 23, 24, and 25 only allow
registers ACO and AC1, we have another error detection
statement in 30690. If it is in error we set the flag field to
"N" to indicate error. This field could be used to give an

error codemwith or without the accompanying error message

that is given here. Statement 30710 then checks that we

have another argument: the address. Next, the branch
address must be computed by 11400. The addressing form
must be decided upon because the IMP16 has PC relative,

October 1975

base and index forms for this instruction. Statement 30795
finishes the instruction-specific part by computing the
machine code for the instruction: opcode-base-from-table +

register*offset-in-word + addressing-mode + address-offset.
Control is transferred to the general routine 45000, which
composes the listing line, outputs it, prints a period for the
impatient user, and returns for another line. The listing file
is as follows:
ADDRESS MACHINE-CODE FLAG SOURCE-STATEMENT

39

10900
10910
10915
10920
10930
10940

(Figure 7 continued)

11900 H1$=SEG$(L-$p2v5) \ GOSUlB 10100 \ X=V2-(B1l+1)
11910 IF X<- ;128 THEN 11920 \ IF X-128 THEN 11930
11920 F'RINT OOUTSID'E OF PC REL RANGE: P9XPL$ \ X=0
11930 IF X:::=0 THEN 11940 \ X=256+X
11940 RETURN

12000 GOSUB 10700
12010 IF V1<::0 THEN 12020 \ IF V1:16 THEN 12030
12020 GOSUB 10920
12030 RETUJRN

30000 REM
30045 PRIN'T \ PRINT \ PRINT \ PRIN T
30060 CLOSE *3 \ CL-OSE *2
30080 OPEN F3$ FOR INPUT AS FILE *2

30100 IF E.NI0ND *2 THEN 50000
30110 INPUT *2:L$
301:1.5 L.4$=- '\X$=SEG$(L$13y13)
30130 IF X$<::::UC' THEN 30200
30140 X$=SEG$(L$p15,255)
30150 P$*_ U&X$
30160 FPRITINr $4P
30170 GO T'O 30100

30200 HI1SEG(L$8, 11)
30210 GOSU1B 10100
30211 Cl:=P0S(L.$,l$(BI)&.. P15)
30212 IF C1="0 THEN 30213 \ C1-C1+LEN(O1$(B1)) \ GO TO 30215
30213 C1=POS(L.$YO1$(B1)%' :,5)+LEN(OI1$(B:))
30215 C2:C.-1
30217 GOSUB 10500
30218B2(B.s1
3022() IF BZ:-31 TFHE'N 40000
30230 IF B2:::14 THEN 30640
30240 IF B2>8 THEN 30500
30250 1F B2::: 4 THEN 30400
30260 GOSUB 10900 \ REM GET' REGISTER
30270 FZIFR-1-:V1 \ IF E: 1<:::1l TH-IEN 30290 \ GOSUBt 11L300 \ GO TO 30330
30290 GOSUtJ 10900
30380 L3:=R1*l024+Vl*2564+02(B2) \ (GO0 TO 45000

30400 GOSUJB 10700
30420 RL-:V1 \ IF E1:1 THEN 30280 \ GOSUB 11100
30440 IF B2X2::6 THEN 30450 \ V:l.:=256.-Vl
30450 IF B2r.::::8E THEN 30460 \ V1=256 -V1
30460 L3=:R1*2564VJ.+02(B2) \ GO TO 45000

30500 GOSUB 1090()
30510 L3==V1*256
30515 VL:L 0)
30520 IF B2:::.1l THEIN 30540
30525 IF E1:::::-. THEN 30530 \ GOSLJB 11300 \ GO TO 30540
30530 GOSUB 1:LO0 \ IF VL::O THEN 30540 \ VI:=-Vl+256
30540 L.3:::L._34+O2(B2)+V1 \ GO 10 45000

30640 FZ1:::0 \N IF B2::25 THEN 30740
30650 GOSlJB 10900 \ REM 13ET REGISTER
30660 R1=V1
30670 IF B2<23 THIEN 30710 \ -REM SEPERATE OUT ACO0ACI ONLY INS,TR
30680 IF V1:'2 THEN 30710
30690 PRINT 0AC12YAC3 ILLEGAL INANEI,yORYSKAZ: ,9L$
30700 V=:L0 \ L.4$= N'
30710 IF E1-::::1 THEI-:N 30750
3072.0 GOSUB 11300 \ GO TO0 30750

30740 L3=0
30750 REM MAY BE O1 INDEX FORM..X(ACN)
30760 GO;SUB 11400
30770 X=V2 \ IF' Vl:2:::256 THEN 30820 \ REM SEFERATE OUT FC RELATIVE:
30780 GOSUB 11900
30795 L-3=V1-fX+O2(B2)+R1*1024 \ GO TO 45000

30820 IF V1=0 THlEN 30840 \ GOSUB 11930 \ GO TO 30790
30840 IF X:>:=O THEN 30790 \ F'RINT 'NEG AD'R?"YXPL$ \ GO TO 30810

40 COMPUTER

40010 'IF B2:: 43 THE:N 40300
40020 IF' B2:: 32 THEN 40:100
.40030 GOSIJB 120(o
40060 Rlt=V1 \ IF` E-::::-I THEN 40070 \ GOJFSUB :1.1;300 \ GCO T:) 4008(0
40070 GOSLJB 10700 \ V2::V1 \ GOSUJB 11:.9()(
40080 L3:4A096+R1*256+fX \ GO TO 45000)

40100 R1=O\Vl:--0
40105 IF- B2::-38f THE:N 40200
40110 IF B2:: 34 THAE'N 40170
40120 GOSULJ 1.0700
40130 IF' V ::o THIEN 40140 \ IF V:L(::7 THIEN 40:1.50
401.40 GOSUB 1092()
40150 R1=V\IF El.J:::::. THAEN 40170 \ (30rSUB 1.:1.300
40160 GO T'O 40200

40170 GOSUB 10700
40180 IF V1.::O 'THIEN 40190 \ IF7 V1:'127 T1H1EN 40200
40190 (30SUB :10920
40200 L..3:-256*RV1.+v 1+02. (2) (30 TO 4500()

40300 IF 82:::-54 THIEN 40500
40310 IF' 82:;50 THlE:N 40400
40320 GlSU(.sl.1B 1:2000
40340 1_3=V1+O2(B2) \ GO TO) .45000

4040() GOsUB 10700
404051F7 VI AEN 40460
.40410 I F1 B 2 5 L TiE N 40420 \ 1 - V 1.:2f8S
40415 IF Vl:: .15 THEN 40460
*40420 IF F`"2-:::-52 THIEN 4043() \ V.::V1 256
40425 IF:V1: 1 5 T-1EN 4(0460
40430 IF B2" ::.:53 T1-1EN 40440 \ :1=V:l A256
40435 IF VI>1'7 THEN 40460
40440 TFF 2 54 THEN 4(04707 \ V:=V1 65408
40445 IF: V1(::128 THEN 40470
40460 X=V\ GOSUB 1.1920
40470 IF' V:1:0 THEN 40460 L..3=Vl+O2(8:.2) \ (30 TO 45000

40500 IF B2:>64 THEN 40600
40510 BOSUB 11400-
40515 IF V1::::.>256 THEN 40520 \ V1:=0
40520 L3=V1+02(B2)
40530 GOSUB 45005
40540 IF B2.::59 THEN 40550 \ V2=V2*2
40550 IF 82: :61 THEN 40560 \ VV2+1
40560 IF B2-':::-63 THEN 40570 \ V2=V2+1.
40510 H1$=SEG$(L.2$y2*5) \ GOSUlB 10100
40575 Bl=81+l \ GOSUB 10000 \ L2$=H1$&'
40580 L.3=V2\L$= \ L4$= \ GOSUB 45010 \ GO TO 30100

40600 IF B2.:'::>65 THEN 40630
40610 GOSUB 10700
40620 L3=V1 \ GO TO 45000

40630 IF B2<::66 THEN 40660
40640 GOSUB 11000
40650 L3=V1 \ GOSUB 11000 \ L3=L3*256+Y1 \ GO TO 45000

40660 IF B2<::.>69 THEN 40700
40670 N1$=SEG$(L$PC2v255)
40680 N1$=TRM$(N1$) \ L4$='C'
40690 GO TO 30140

40700 GOSUB 10700
40710 L3V1 \ L4$=S' \ L2$=' * \ GOSUB 45010 \ 00 TO 30100

45000 GOSUB'45005 \ GO TO 30100
45005 L2$=SEG$(LSv1 6)
45010 B1-L3 \ GOSUB 10000 \ L3$=H1$
45020 L$=SEG$(L$* 4v255)
45030 P$=L2$1L3$&' '1L4$9' '&L$
45033 PRINT *4:PS
45035 IF P9=0 THEN 45040 \ PRINT P$ \ RETURN
45040 PRINT g%o# \ RETURN

41October 1975

Pass 3 The final pass consists of printing the symbol
table in alphanumeric order, and then outputting the
machine code in a form suitable for the microprocessor
loader or for a ROM burner, etc. The symbol table code is
in Figure 8. It is a simple "bubble" sort, again not chosen
for speed, but for its small core requirement and ease of
debugging.

50000
50010
50020
50030
50035

floppy disk subsystems such as the TEC Corporation's
DISCO-TEC. This is a buffered floppy disk system with two
RS232 serial ports. This unit could be inserted between the
user's terminal and the timesharing computer to produce
binary files on the disk, then connected between the
terminal and the microprocessor's RS232 I/O port to load

FOR K=O TO P3-L
IF TL$(K)::X$ TIHEN 50060 \ GO TO 50080
IF T1$(K)::'.' THEN 50070 \ GO TO 50080
X4=K \ X$=TL$(K)

50080 NEXT K

50090
50095
50100
50110

BL=TL(X4) '

TL$(X4)='
NEXT J
STOP

The generation of the machine code in a suitable format
is not described here because it is not only target machine
dependent, but application dependent too (ROM burner,
paper tape, floppy disk, etc.). It is quite simple to write
since the code is already available in the listing file. The
listing file must be opened and read sequentially to pick off
addresses, if needed, and the absolute code, converted to
binary from the hex string format, and output in the proper
format.

Conclusion

Besides the basic BASIC assembler described here, many
types of preprocessing programs could be envisioned. One
example is a macroprocessor. Other preprocessors, such as

the many forms of PL/I languages for microprocessors,
could then feed the macroprocessor. All of these could be
written in BASIC as separate programs with intermediate
files-e.g., source PL/l, macro, assembly, temporary for
assembler, and finally machine code. Each of these could be
programmed totally independently once the "languages"
were defined.

When you are programming on a BASIC-only system,
which many timesharing systems are, the source program of
the target computer (e.g., IMP-16) could be written and
edited entirely under the BASIC editor. The cross assembler
could simply throw away the line numbers on input, or
better yet, label the output listing with the line numbers on
the extreme left. This is especially useful with error
messages, because the user can then use the editor to list
just that line for correction without searching the entire
program to try to locate the line in error.

If paper tape is available, the cross assembler could
produce the absolute machine code directly for loading into
the microprocessor. If a relocating loader is available on the
microprocessor, a relocatable binary tape could be
produced. In the absence of a relocating loader, this could
also be programmed in BASIC to operate on disk binary
files previously created by the cross assembler to produce
an absolute binary paper tape. Of course, this final tape
could also be in hexadecimal or BPNF format for a ROM
burner. Another alternative involves using one of the new

42

\ GOSLUB :LOOOO \ PRINT T1$(X4)H1.$

the microprocessor. The beauty of this system is the
hardware and software transparency-i.e., the two CPU's
function exactly as if they were communicating with a
terminal with paper tape.
A microprocessor simulator written in any high-level

language presents two basic problems: speed and accuracy
of simulation. With regard to speed of simulated execution,
many microprocessors contain a number of internal flags
which have to be exactly simulated to cover all possible
sequences of instructions. There is also a great amount of
bit manipulation, especially if the word lengths of the
machines do not match. Even if you can live with the cost
of slow execution, the problem of accuracy becomes the
deciding factor. This accuracy problem is most apparent in
I/O. Since microprocessor programs are most often directly
concerned with I/O, it becomes quite difficult to verify
routines which will depend on these external factors. One
of the solutions to this problem is having the simulator
keep track of the simulated execution time. Then
subroutines can be written which vary these simulated
external parameters in a random way within the range of
the actual device parameters. Of course, this increases the
simulation execution time again. In general, if the
microprocessor is available with a front panel, or a
simulated terminal front panel (e.g., MOS Technology's
TIM and KIM), simulation on the target machine itself will
be superior in time and money to a simulation on a
timesharing CPU.

Steve Conley is currently finishing his PhD
requirements at the University of Arizona in
electrical engineering, with a dissertation on a
DARE microprocessor system running under a
BASIC operating system. The DARE program is
a continuing effort at the U of A to replace the

analog computer with the digital in both
simulation and control applications. He re-

ceived the BS in computer science at Vanderbilt
in 1971 and the MSEE at U of A in 1973.

During the past two years he has been a consultant in hardware and
software for several mini/microcomputer firms. His interests lie in
systems programming, real-time/multiprogramming systems, and
(for fun) computer music and games.

COMPUTER

CLOSE #4
IF A$='SYM' T1HEN 50020 \ STOP
PRINT \ PRINT
FOR J=O TO P3 1
X$='ZZZZZZZZM

Figure 8.
Symbol table
sort and listing section

50040
50050
50060
50070

