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Abstract— Brain-computer interface (BCI), an actively re-
searched multi-disciplinary domain, has completely trans-
formed the approach to robotic control problems. Researchers
have focused on developing algorithms that optimize robotic
movement to achieve desired trajectories, and it’s a general
understanding that route optimization problems are difficult
to solve mathematically. Humans, on the other hand, tend
to optimize their day-to-day activities intuitively. In order to
achieve the desired results, the brain exploits a multi-level
filtering approach, where the macro features are weighted
in the first layer and the microfeatures in further layers.
This optimization inside the brain interestingly, leave distinct
traces in electroencephalography (EEG) plots. Based on the
observations, we propose to use artificial neural networks to
classify the EEG data, which intuitively should give a high
classification rate, because the human brain also exploits a
network of neurons to classify auditory (time-series) and visual
(spatial) data. In this paper, we discuss the performances of 14-
channel and 5-channel EEG headsets for robotic applications.
Data is acquired from 20 subjects corresponding to four
different tasks. Using neural nets, we have been successfully
able to classify the EEG input into four different classes. We
get an overall classification accuracy of 98.8% for 14-channel
and 84.5% 5-channel system. As a real-time demonstration of
the interface, the predicted class number is sent to a multi-rotor
via a wireless link as an appropriate velocity command.

I. INTRODUCTION

The functioning of the brain has always intrigued re-

searchers and scientists across the world. In the beginning,

focal areas of research involved the neurological study of the

brain i.e. understanding it’s connectivity to the other organs

and regulation of functionality of the body. However, the

exact functioning of the brain was unclear until the discovery

of underlying electrical activity in 1924, when Hans Berger

[1] first recorded the human brain activity by means of

EEG. Analyzing the traces, he was able to categorize a

certain oscillatory activity, now commonly referred to as

the ’alpha signals’ (8-13 Hz). Interestingly, he correlated the

abnormalities in the EEG traces to brain-related diseases.

However, it was 53 years later, in 1977, when UCLA Prof.

Jacques Vidal realized the potential of Electroencephalog-

raphy. He demonstrated in an experiment [2], the control

of a cursor-like graphical object on a computer screen. He

coined the term ’BCI’ and is considered as the inventor of

brain-computer interface paradigm. Soon after Vidal’s work,

in 1988, Bozinovski et al. [3] reported a non-invasive EEG

control of multiple start-stop-restart movements of a physical

robot. Brain-computer interfaces, since then have been used
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for augmenting, assisting and repairing human cognitive or

sensory-motor functions. As opposed to neuroprosthetics,

BCIs are not artificial devices implanted in the human body.

The primary reason that BCIs can be aimed at neuro-

prosthetic applications is the remarkable cortical plasticity

of the brain, that signals from implanted prostheses post-

adaptation are handled by the brain like natural sensors. In

order to implement a BCI-based neuroprosthetic device, it is

of utmost importance to ensure a proper classification of the

EEG data. Chapin et al. [4] demonstrated real-time control

of robotic arm using data from the motor cortex.

From the year 2000 onwards, more focus was put on

developing algorithms that had improved classification ac-

curacies on EEG data. Qin et al. [5] were able to achieve

80% classification rate using a combination of equivalent

dipole analysis and cortical current density imaging analysis.

Schalk et al. [6] developed a general purpose BCI research

and development platform, called BCI2000. It has been used

to create BCI systems for a variety of brain signals and pro-

cessing methods. Leuthardt et al. [7] demonstrated a novel

concept of using the electrocorticographic (ECoG) activity

recorded from the surface of the brain. With a training

period of 3-24 min, patients were able to master closed-loop

control with accuracies in the range of 74-100%. Kamousi et
al. [8] developed an off-center approach to classification of

motor imagery tasks using two-equivalent-dipoles and source

analysis.They were able to achieve a classification rate of

80%. Coyle et al. [9] describe the construction, principles of

operation and implementation of a fNIRS-BCI (functional

near-infrared spectroscopy) that exploits motor imagery for

control. It’s a binary control algorithm with ON/OFF states.

Qin et al. [10] later in 2005 suggested a wavelet-based

time-frequency analysis approach for categorizing motor im-

agery tasks. They tested their algorithm on nine subjects and

got an overall accuracy of 78%. Lotte et al. [11] reviewed and

presented briefly some of the commonly used classification

algorithms used to design BCIs. They provide guidelines to

choose suitable algorithm(s) for a suitable BCI. Cincotti et
al. [12] predicted that a better classification technique could

be achieved by providing the BCI with unmixed activity

signals of small cortical regions, which is usually the case

in motor-related tasks. They were, however, able to achieve

a classification rate of 80%. Later in the same year, Cincotti

et al. [13] reported a pilot study on BCI as an assistive

technology for the differentially abled persons.

An interesting application of BCI is the control of multi-

rotor aircrafts because training pilots for RC control is a

tedious task. BCIs have the potential to replace RC control
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with thought-based control. In the same line LaFleur et al.
[14] demonstrated a BCI capable of real-time quad-rotor

control in 3D space. They were able to achieve 90.5%

accuracy in individual subjects at a straight line speed of 0.69

ms−1. Kim et al. [15] proposed a wearable hybrid interface

for influencing the control of quadrotors in 3D space. Their

noninvasive model, however, took into consideration eye

movements also. Vokorokos et al. [16] introduced techniques

for noninvasive EEG data collection from a commercially

available EPOC headset, manufactured by Emotiv.

After the background work, we realized that there is a

lot of scope of improvement in the classification rates and

the interface design. In this paper, we not only propose an

alternate method to classify pre-processed EEG data using

artificial neural networks, but we also implement the classifi-

cation in a real-time demonstration on multi-rotors. The BCI

problem statement doesn’t just end with classification; it has

to be integrated to a hardware system, only then can the true

potential of BCI could be realized. The contributions of this

paper are in the same line of thought :

• An EEG classification technique that results in 98%

classification accuracy.

• A user-friendly interface which could be integrated with

robots of different nature.

II. METHODOLOGY

A brain computer interface mainly consists of 6 stages

: data acquisition, pre-processing, channel selection, feature

extraction and reduction, classification and control interface

with the external world, as shown in Fig. 1.

Fig. 1: A General BCI System

A. Brain Waves and Electroencephalography (EEG)

The electroencephalogram (EEG) is a recording of the

electrical activity of the brain from the scalp. Te recorded

electrical activity of the human brain is very small, usually

measured in μV. A human EEG signal fundamentally com-

prises of a number of frequency signals classified as:

• Delta - Delta band a frequency of 3 Hz or below. These

waves are inherently slow but have higher amplitudes.

It may occur focally with subcortical lesions and in

general distribution with diffuse lesions, metabolic en-

cephalopathy hydrocephalus or deep midline lesions.

• Theta - Theta band has a frequency of 3.5 to 7.5 Hz.

It is categorized as ”slow” activity.

• Alpha - This region is localized between 7.5 and 13 Hz

and is usually best seen in the posterior regions of the

head.

• Beta - Beta activity is ”fast” activity. It has a frequency

of 14 Hz and greater.

• Gamma - Gamma signals usually have a frequency

range between 25 and 100 Hz, though 40 Hz is typical.

B. Experimental Subjects
EEG data was collected from 20 healthy subjects for

performing four different motor imagery tasks. The subjects

belonged to the age group of 22-28 years, excluding two who

were above 50. There were 14 male subjects and 9 female

subjects in total. Each subject provided a written consent

of their willingness to participate in this BCI experiment,

verified by the Institute Human Ethics Committee (IHEC) of

Indian Institute of Science. Only 3 subjects were previously

involved in a BCI related activity, while the others had not

been exposed to this field.

C. Acquisition Protocol
We have designed our own protocol for data acquisition

which was followed for all the subjects. Four motor imagery

tasks with rest breaks in between were designed so the

motor imagery task is reinforced and signals retain sufficient

useful information after a tedious acquisition procedure. The

acquisition protocol is as shown in Fig. 2

Fig. 2: Acquisition Protocol

Motor Imagery (MI) Task 1 is imagining left hand move-

ment, task 2 is imagining right hand movement, task 3

is imagining left hand movement with finger and elbow

movement and finally task 4 is right hand movements with

fingers and elbow. The EEG data corresponding to the

4 different motor imagery tasks is depicted in Fig. 3. It

becomes increasingly clear from the plot that the variations in

the EEG data are prominent and could be extracted provided

the algorithm is accurate.

Fig. 3: Amplitude vs. Time Plots of the 4 MI Tasks

We use finger and elbow movements to increase the

activations in the sensory-motor cortex as seen in literature

survey. The time durations are kept random so the brain does

not get used to the tasks repetitive nature which usually

results in decreased amplitude of the activation signals as

seen by taking real time Fast Fourier Transform (FFT) of

the acquired signals, as shown in Fig. 4
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Fig. 4: Amplitude vs. Freq. (FFT) Plots of the 4 MI Tasks

(a) Cognitive Suite (b) Headset Connectivity Test

Fig. 5: Training and Connectivity Testing

D. Subject Training

For an accurate BCI system design, it is very important

that the subjects concentrate on a particular task, which

would otherwise have a negative impact on the accuracy on

the system. Focused thoughts could result in a more localized

stream of information in the EEG data.

The subjects in this experiment were trained with the

assitance of a cognitive suite shipped along with the Emotiv

SDK called Xavier Control Panel (Fig. 5a). The connectivity

of the headset is also constantly monitored as shown in Fig.

5b The subject is trained to focus on box movements (which

could be up-down-left-right-push-pull etc.), so that he/she

can execute the MI tasks with more efficiency. An real-time

example of the training and testing procedures is shown in

Fig. 6.

E. Data Acquisition

In this study, we have used a commercially available non-

invasive BCI headsets from Emotiv, called EPOC+ (14-

channel) and INSIGHT (5-channel) as shown in Fig. 7.

The technical specifications of both the headsets have been

mention in Table 1.

(a) Subject Training (b) Real-Time Testing

Fig. 6: System Training and Testing Demonstrations

(a) EPOC+ (14-channel) (b) INSIGHT (5-channel)

Fig. 7: Headsets used for experimentation

TABLE I: Headset Specifications

Specification EPOC+ INSIGHT
Channels 14 5

References 2 2

Sampling Method Sequential Sequential

Sampling Rate 128 SPS 128 SPS

Voltage Resolution 0.51μV 0.51μV

Bandwidth 0.21 - 43 Hz 1 - 43 Hz

Connectivity Bluetooth@Smart Bluetooth 4.0

Battery 640mAh LiPo 480mAh LiPo

Both the headsets have 2 reference channels each, in the

CMS/DRL noise cancellation configuration. The reference

electrodes for EPOC+ are located at P3/P4 locations. EPOC+

has electrodes placed at AF3, F7, F3, FC5, T7, P7, O1,

O2, P8, T8, FC6, F4, F8, AF4 and INSIGHT has electrodes

at AF3, AF4, T7, T8, Pz locations as per the International

10-20 system. EPOC+ also has a built in digital 5th order

Sinc filter, which allows some basic filtering before the pre-

processing takes place. Raw EEG data is acquired from both

the headsets using an open-source library called ’emokit’,

which directly dumps the μV readings from every electrode

onto the terminal.

F. Pre-Processing and Feature Extraction

The acquisition device is not capable of distinguishing

between artifacts and useful data. The recorded activity

which is not of cerebral origin is termed artifact and can

be divided into physiologic (generated from the subject

from sources other than the brain) and extra-physiologic

artifacts arise from outside the body (equipment including the

electrodes and the environment).Thus preprocessing becomes

a necessary criterion before any further computations can be

done.

For starters, a high order zero-phase shift band-pass filter

is applied with lower and upper cut-off frequencies of 1 Hz

and 40 Hz respectively. Eye blinks and other muscle-related

artifacts are also filtered. The cornerstone to generate con-

trol signals that will facilitate the classification of different

mental tasks is to extract the appropriate features from the

obtained EEG data. A number of different methods were

used to perform feature extraction for various signals such

as Discrete Wavelet Transform, Power Spectral Analysis,

Time-Domain analysis etc. Our feature vector is dominated

by wavelet features as they provide more detailed temporal

information about each band of frequencies in the EEG

signals.
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Fig. 8: Zero Phase Shift Band Pass Filter (1-40 Hz)

1) Wavelet Transform Coefficients: In this study, we per-

form a four-level wavelet decomposition with each level hav-

ing approximation (low frequency components) and detail
(high frequency content) coefficients. The wavelet transform

coefficients have been defined by Yohanes et al. [17]. It is

assumed that the scaling and wavelet functions are given as

Haar and Daubechies respectively i.e the basis are known,

so the discrete signal f [n] could be approximated in l2(Z)1

as :

f [n] =
1√
M ∑

k
Wφ [ j0,k]φ j0,k[n]+

1√
M

∞

∑
j= j0

∑
k

Wψ [ j,k]ψ j,k[n]

(1)

Here, f [n], φ j0,k[n] and ψ j,k[n] are discrete functions

defined in [0,M − 1]. As the sets are orthogonal to each

other, we calculate the inner product to obtain the wavelet

coefficients :

Wφ [ j0,k] =
1√
M ∑

n
f [n]φ j0,k[n] (2)

Wψ [ j,k] =
1√
M ∑

n
f [n]ψ j,k[n] j ≥ j0 (3)

where, l2(Z)1 is defined as :

l2(Z)1 = f [n]|
∞

∑
−∞
| f [n]|2 < ∞ (4)

TABLE II: DWT Signal Decomposition Spectrum

Distribution EEG Band Bandwidth
D1 Gamma 30-40 Hz

D2 Beta 20-30 Hz

D3 Alpha 8-20 Hz

D4 Theta 5-8 Hz

A4 Delta 0-5 Hz

The DWT coefficients represent the degree of correlation

between the analyzed signal and the wavelet function at

different instances of time. Therefore, DWT coefficients

carry useful temporal information about the transient ac-

tivity of the analyzed signal, as has been demonstrated by

Verma et al. [19], where they have used a combination of

DWT coefficients and LSSVM (least square support vector

machines) to classify EEG data. In contrast to previous

methods, our proposed feature fully utilizes the simultaneous

time-frequency analysis of DWT by preserving the temporal

information in the DWT coefficients. It was observed that

the choice of wavelet function in DWT greatly affects the

resulting DWT coefficients. We make use of Daubechies

db4 function for wavelet decomposition. The coefficients are

defined as follows :

Cx(t)(l,n) =
∫ ∞

−∞
x(t)ψl,n(t)dt (5)

where ψl,n is the wavelet function defined as :

ψl,n = 2−(l+1)ψ(2−(l+1)(t−2−ln)) (6)

After performing DWT, the sub-band energy and entropy

are calculated in the following way:

ENGi = ∑
n
|Cx(t)(l,n)|2 (7)

ENTi = ∑
n
|Cx(t)(l,n)|2 log

⌊|Cx(t)(l,n)|2
⌋

(8)

The coeffcients corresponding to level 4 could be calculated

by putting l = 4. Then the feature vector,
#»
F could be defined

as:
#»
F = {ENGi,ENTi} (9)

2) Differential Entropy: Differential entropy is a measure

of average surprisal of a random variable, to continuous

probability distributions which has been defined for EEG

based emotion classification by Duan et al. [18] as:

h(X) =−
∫ ∞

−∞

1√
2πσ2

e
−(x−μ)2

2σ2 log

(
1√

2πσ2
e
−(x−μ)2

2σ2

)
dx

(10)

which reduces to :

h(X) =
1

2
log(2πeσ2) (11)

where the time series variable X obeys the Gaussian dis-

tribution N(μ,σ2). For a fixed length of EEG data, DE is

equivalent to the logarithm of average energy in a certain fre-

quency band. The resultant feature vectors for the INSIGHT
and EPOC+ have sizes 80×60 and 92×168 respectively.

G. Neural Network Model and Testing

The neural network is a relatively simple model, in terms

of architecture. It consists of 1 hidden layer (consisting of

25 neurons) and one fully connected layer (FCN) with 4

neurons for 4 classes. The architecture is depicted in Fig.

9. We used a total of 20 samples (all different subjects) for

testing the model and the testing accuracy is as high as 88%

as seen the confusion matrix plot in Fig. 11, 13 and 14.

Fig. 9: Neural Network with 25 neurons

186



While tweaking the neural architecture and the number of

neurons, we tested several architectures with multiple layers.

We noted the computation time of every architecture in

Python using the ’time’ library. We tried single hidden layer

architecture with 100, 200, 300, 400, 500...and so on neurons,

and we observed that the architecture with 500 neurons was

an optimal combination of complexity, speed and accuracy.

The problem with multiple layered structures was the speed,

which we did not want to compromise with. We finalized on

the architecture with 500 neurons in the hidden layer with

softmax activation function(Fig. 10), which gave remarkable

results. As seen in the confusion plots, we have used 15

datasets (15 different subjects) for training, 2 for validation

and 3 for testing.

Fig. 10: Neural Network with 500 neurons

Fig. 11: Confusion Matrix for INSIGHT (5-channel)

III. EXPERIMENTAL SETUP

The test subject is asked to wear the headset and perform

the same mental tasks as were performed previously during

data acquisition, for a duration of 2-3 seconds. The time

series data so obtained is stored in an array and pre-processed

using the techniques mentioned above. The information is

then fed to the neural network for classification, which in

our case is an integer. The algorithm sends only high level

translation and angular velocity commands to the quadrotor

platform, in the form of these predicted integers.

Two off-the-shelf quadcopters, AR Drone 2.0 (Fig. 12b)

and Parrot Bebop 2 (Fig. 12a), compatible with Python

(a) Bebop 2 (b) AR Drone 2.0

Fig. 12: Testing Platforms

programming language, were used as hardware platforms

for algorithm development and testing. WiFi is used for

communicating between the systems. Maneuvering the Parrot

is handled by an open-source Python library called python-
ardrone, while we use bebopautonomy for the Bebop.

IV. RESULTS

The respective performance matrices have been tabulated

in Table III for 5-channel and 14-channel headsets, for 23

neurons in the hidden layer. The maximum classification

accuracy we achieved was 98% when there were 500 neurons

in the hidden layer for 14-channel headset data. A video

of the same could be watched at the following link :

https://www.youtube.com/watch?v=zt1AdiktwXs

TABLE III: Performance Evaluation

Metric EPOC+ INSIGHT
Feature Vector Size 80×60 92×168

Training Samples 60 69

Validation Samples 10 9

Testing Samples 12 14

Accuracy 85.6% 98.2%

The confusion matrices for the training, validation and testing

have been plotted and displayed in Fig.11, FIg. 13 and Fig.

14.

V. CONCLUSIONS AND FUTURE RESEARCH

As demonstrated in the paper, the proposed BCI system is

capable of classifying EEG data with an accuracy of 98%

in real-time. With an improved neural network architecture,

accuracies upto 98.2% can also be achieved, as depicted

in the confusion matrix for EPOC+ in Fig. 14. Both 25-

neuron and 500-neuron architectures have proven to work

in real time due to the availability of high end laptops for

computation. However, the biggest challenge with monitor-

ing EEG, is artifact recognition and elimination. There are

subject related artifacts (e.g. movement, sweating, ECG, eye

movements) and technical artifacts (50/60 Hz artifact, device

related artifacts), which have to be handled differently.

The data acquisition protocol, for this study, was carefully

designed to get maximum signal to noise ratio and all

external disturbances were eliminated such as noise, light

and wireless radio-interferences. Sufficient breaks in between

sessions were given for the subject to focus and perform
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(a) Training and Test Confusion
Matrices

(b) Validation and All Confusion
Matrices

Fig. 13: Confusion Matrix for EPOC+ with 23 neurons

better at the motor imagery tasks. The concept of brain-

computer interface is revolutionary in itself, provided the

EEG data acquired from subjects is actually the EEG data

and not some noise/garbage values. Such a classification

model can be implemented to other applications as well. We

are working further to make the model more robust in terms

of training time and accuracy.
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