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Detection and Parameter Estimation 1n an

Amplitude-Comparison Monopulse Radar

EDWARD M. HOFSTIETTER, MEMBER,

Abstract—This paper considers the problem of detecting and

estimating the unknown angular location of a radar target that is ob- -

served simultaneously by a number of antennas. The amplitude of
the signal received by a particular antenna is assumed to depend on
the angular location of the target, but the time of arrival of the signal
is assumed fo be the same at all of the antennas.

The generalized likelihood ratio test is used to derive the detec-
tion and parameter-estimation strategy for the radar receiver. Ex-
plicit expressions for the detector and the angle estimates are derived
in a number of important special cases, and the performance of the
detector is evaluated. Accuracy formulas for the angle estimates,
valid for high signal-te-noise ratios, are derived for the general
problem and used to compare the performance of an optimum four-
beam monopulse system with a type of monopulse system commonly
in use. : -

INTRODUCTION _

THIS PAPER is concerngd with the problem of

detection and parameter estimation in an mnphtude?

- comparison monopulse radar. The term “amplitude
comparison’’ refers to the fact that information about the
angular location of a target in space is derived from a
cluster of antenna beams whose gain patterns are skewed

in angle so that the received signal appears in dilferent

antenna beams with amplitudes that depend on the target
angle relative to the antenna complex. The antennas are so
designed that the arrival times of the received waveform
at the different antennas arve nearly identical (1, [2].

“The basic goal of this paper is to apply the generalized
likelihood ratio test [3], [4] to derive a strategy for detect-
ing targets whose amplitude, earrier phase, and angular
location are unknown and to obtain cstimates of these un-
known parameters. The solution to this problem will be
obtained and then extended to the case where additional
target parameters such as range and velocmy are unknown.
The detection characteristic (probability of detection ver-
sus probability of false alavm) of the maximum-likelihood
receiver will be derived in certain special cases, and
expressions for the high sig nal-to-noise ratio covariance
matrix of the angle estimates will be obtained.

There are actually several different versions of the prob-
lem described above, which depend on the physical
situation at hand. First, the problem can be either one-
or two-dimensional depending on whether the target has
to be located in only one angular coordinate such as
azimuth or clevation or whether it has to be located in
both angular coordinates. In the first case a minimum of
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two beams is required, in the second case a minimum of
three beams. Second, different mathematical problems
arise depending on whether it is assumed that the target
returns received on the various beams are coherent or
incoherent with respect to one another. Sclutions can be

obtained for all of these versions of the problem, but the
degree 1o which the solution can be made explicit and the
degree to which the performance of the resulting receiver

can be analyzed depend strongly on which version is under.

consideration. Forfunately, the analysis can be completed
to o satisfactory degree in most cases of interest.

There does not secem to be a great deal of literature
available on the problem considered in this paper. The
most pertinent reference is a recent paper by MeGinn (5],
which discusses the estimation of a single target location
angle and perhaps other unknown target parameters
given two coherent receiver beams. The problems of
delection, two-dimensional angle estimation, and incoher-
ent receiver beams are not considered. Furthermore, the

approach taken by the present paper does not require the

beam-shape assumplions used by MeGinn, and by explie-
itly treating carrier phase as an unknown parameter it

obtains a number of new results.

Another pertinent reference is a paper by Urkowitz [6],
which discusses the maximum angular estimation aceuracy
achievable by means of a physical antenna aperture. This
is o more general problem than the one treated in the
present paper in that Urkowitz considers antennas that
are both phase and amplitude sensitive, but his accuracy
formulas are not as explicit as those derived here for the
special case of amplitude-sensitive antennas, and he does
not attempt to derive the structure of the optimum re-
ceiver .that achieves these accuracies. The problem of

" combined detection and angle estimation is not considered

in his paper.
¥
DERIVATION OF THE MAXIMUM-LIKELIZ0OD RECEIVER

Incoherent Beams
The case of incoherent beams will be considered first

beeause the mathematics involved is simpler than in the

coherent case. It is assumed that both angular coordinates
of the target must be estimated and that m beams, m > 3,

are used. The complex envelopes 7.(t) of the received

waveforms are of the form
) = AcV'G(0, s(D) + n(d) Lo ,m (D)

“where 4 > 0 denotes the unknown received signal ampli-
tude, ¥; the unknown carrier phase of the signal in the zth
beam, and s{t) the known complex envelope of the trans-
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" mitted signal. For convenlence this signal is normalized so
. that [ ]s()]* d¢ = 1. The n, denote the complex envelopes

" of zero-mean white Gaussian noises that arc independent
from channel to channel. In symbols,*

Efn(ng ()] = ANy 61 8(t — #)
Eln(On ()] = 0.

The real funetion G, (6, ¢) denotes the beam pattern of the
7th beam measured with respect to the angular coordinates
6 and ¢. These coordinates may be thought of as azimuth
and elevation angles, but any two other coordinates capa-
ble of defining a direction in'space could be used. Thus, the
¢ term AG, (6, o) denotes the amplitude of the signal received
ron the 7th beam when the angular coordinates of the target
are 0 and ¢. The assumption that the G, are real reflects
the fact that the arrival times of the received waveform
at the different antennas are assumed to be identical re-
gardless of the angular location of the target. This is never
exactly the case in a practical amplitude-comparison
monopulse system, but carcful antemna design can yield a
system for which it is a reasonable assumption.

The beam-to-beam incoherence of the problem comes
about through the assumption that the carrier phases ¢:
are unknown and not necessarily the same in each chaunel.
When the coherent case is treated, a single common un-
known carrier phase will be postulsted.

Stated in mathematical language, the problem at hand
is to obsgerve the time waveforms 7, {€), 7 = 1, -- -, min the
observation interval®> ¢ < ¢ < 7 and then to decide
whether a target is present or not (A4 > Qor A = 0). If the
decision is “larget present,” estineates of the unknown
parameters, 4, ¥, 8, and ¢ are to be obtained. The gener-
alized likelihood ratio test will be wused. to_ perform {his
task. This test requires the recetver lo calculate lhe
quantity®

)

T AT A e vy

max plr()),0 <t <T | A, 8,0, U]

. A.l!J.ﬂ.rgiﬁ _ . N I e
L= pr(,0<t<T| A =0] ! @)

where r(f) denotes the st of values #:(f), - -+, 7.(t) and ¢
denotes the set of values ¢y, -+, ¥, and to caompare it
with a present threshold N, If I, < X, the decision “target
absent” is made. If I > ), “target present” is announced
and the values of 4, ¢, 6, and ¢ that achieved the maxi-
mum In (3) are taken as estimates of the true values of

these parameters. Making use of (1) and (2), (3) can be

written
m T
max cxp{—iif Zf lri(6) — Ae’V'G (0, D)s()] dt}
fotloe L Vo il

P {“:hlvo % [ wor ‘”} )

I The asterisk denotes complex conjugation. This complex noise
corresponds to a real white noise with u tsvo-sided power density
of Ny watts per eycle. o

2 7" is assumed to he much larger than the duration of s(f).

3 Strictly speaking, neither numerator nor denominator of this
expression exists. But, Grenander has shown that it is possible to
define a suitable likelihood ratio which approaches the quantity
given by (3) in the limit as {he noises involved become white.
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equation is

23

which can be simplified with the result,

l=4N,In L

= max Y (24G.(0, &) Re [ge ] — 4G, 9],

A, ‘!."J s il
(5)
where
T
ve = r@s ©)

The complex voltages y: can be formed by passing r:()
through a filter matched to the known waveform s(t).
The maximization on A is accomplished by differenti-
ating the summation appearing in (5) with respect to 4
and selting this derivative equal to zero. The resulting

(2G.(0, ¢) Re [y ] — 24G30, 9} = 0

or

N Y G0, 9 Re lye
A= — @)
PIREHCAD

=l

Substitution of (7) in (5) yields the result

[Z (0, ¢) Re <y.-e—w-)]‘
max il _ 7 ‘ (8>

Z} a6, v

- - Yoo

The next step is to perform the maximization with
respect to the parameters & Inspection of (8) shows that
it is maximized when

$ = arg [%Giw; ‘P)]

and this maximum is given by

[ 3l 00,1

2

[ = max 9
oo 2. G0, ¢)
i=1

The next step would be to maximize with respect to 8
and ¢; however, no way of explicitly performing this op-
eration has been found when m is greater than 3. To
sce the reason for this, note that the Schwarz inequality
applied to (9) yields

[Swicoal] .

{ = max — < Z [y:]® (10)
rre 2. G0, o) =
il

and furthermore, equality is achicved in this bound,
=Y |y if and only if

G0, ) = alydl =1, (11)

, M,
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where o denotes an arbitrary proportionalily constant. If
m = 3, (11) can be satisfied by choosing § and ¢ such that

G0, 0| _ lul G0, )] _ Il (12)
Gl T sl 6@l T Tl
and then choosing @ = |G5(6, @)|/lys]. Examples of gain

functions G, can be constructed for which (12) eannot be
solved for 8, ¢ for all possible [y.|. Therefore, it will be
necessary to assume that the functions G are of such a
form that the equations above can be solved for 6, ¢ for all
non-negative values on their right-hand sides. This as-
sumption will be in force, wherever it is dpphc able,
throughout the remainder of the paper.

When m > 3, there are more equations than unknowns
and no solution to_(11) will exist in general. In this case,

L= 2oyl

i=l

and no explicit way of performing the maximization re-

quired by (9) has been found.

The results for the case m = 3 can be summ.m/ed by
saying that the maximum- Jlikelihood strategy leads to a
receiver that computes the quantity

U= lul® + |l + |l (13)

and compares it with a threshold. If I < X, “turget absent”
is announced, If I > \, “target present” is announced, and
the values of § and @ that solve (12) are taken as estimates
of the true values of these parameters.

When only one target annle is unknown or when f&n,

beams are used so that the antenna gains are only a func-
tion of one_ target angle, then a minimum of two beams
must be used to estimate the upknown angle. By an
analysis that is identical, almost word for word, to the one

just given, it can be shown that, for m = 2, the receiver

~

compares the quantity

=l + lnal? (14)
with a threshold and uses the value of § satisfying
16O _ lnl
ZILT) 15
&) = 1l =

as the estimate of 6. Once again, it will be assumed that the

G; are of such a form that (15) has a solution for all non-

negative values of its right-hand side.

Even in those eases where it is not possible to give an
explicit expression for [, it is still possible to give an in-
teresting and useful physical interpretation of this quan-
tity. The crux of this interpretation lies in the fact that a

linear combination of the beam voltages |y;| results in

a synthetic beam pointing in some direction in between the
directions of the original beams. More precisely, if there is
no system noise,

i lv.] 160, 0)] = 4 il G.(6s, 20)G.(0, 9], (16)
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where 0y, ¢, denote the true angular coordinates of the

target. The right-hand side of (16), considered as a func-
tion of 6, v, for fixed 0, ¢ has its maximum at 8, = 6,
@ = ¢. Thus, it represents a beam pointing in the direction
dcﬁncd by the angulu coordinates 8, «. The shape of this

‘beam depends, of course, on the ddv‘u]od shapes of the

original beam patterns G;. It is now obvious that the quan-
tity: 7 is the maxinuum response that results when the
synihetic beam is steered 1o all possible dircetions in
sedreh of the target. (The denominator of (9) is simply &
normalization factor that forces the maximum gains of all
the synthetic beams to be equal.)

Colerent Beams

In this case, the complex envelopes of the signals re-
ceived on the m beams are given by the expressions .

1=1,---,m,

rf) = AePG(0, o)s(t) + ni()

where the meaning of all symbols is the same as in the
incoherent case. The only difference between the coherent
and incoherent cases is that ithe carrier phase angle ¢, al-

Ahough unknown, is assumed 1o be the same in all receiver

beams.
The likelihood ratio L ean be derived using the same

techniques as in the incoherent case, with the result

L= 4N, In [,
—1¢]

— A%G(0, 9}
(17)

. ;7 max Z 2A4G (0, 0) Re[y:

Al i

The maximization on A proceeds exactly as before and
leads to

- T {i Gi(gv ‘ro) I{e {y‘e;ﬂﬁ]}z

! = max (18)
P36
=1
Upon rewriting (18) as follows,
m 2
{Re [Z y:G(8, ga)e"'"]}
! = max - L - o - (19)
L > G0, ¢
i=1

it is seen readily that its maximum with respect to  occurs
for

¥ =g [Z y.G:(0, v”)] (20)
io1
and is given by
Z y.Gi(8, 99)
I = max “ -t 1)
.o 3 G0, ) ‘
=1
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The expression for I given by (21) ean be given a syn- It will be necessary to assume that the gams G, are of such
thetic beam interpretution similar to the one given for the  a form that (27) can be solved for 4, 3 for all real values of

incoherent problem. In fact, the only difference between
the two interpretations is that in the coherent case the
synthetic beams are formed at RF; in the ineoherent case
nr‘ at vidon
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we 10MeG av VIGEo.
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The analysis so far has differed very little from ﬂmt per-
#n,..\-.grl far H\A Y A case +on avanfe
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the maximization on 8 and ¢ indicated in (21), and it is at
" this step that a real difference between the two cases arises.

In the incoherent case, the Schwarz inequality was used for
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not yet been eliminated. Application of the Schwarz
inequality to this expression yields the bound

sinh thao aarrier nhaca anola L haa
11C1x VNC CArTICY PiasSC augic v aas

I <max », {Refye ]}, (22)
¢ i=l
which can be achieved if and only if
G0, ¢) =aRelye™] i=1,---,m,  (23)

where « denotes an arbitrary proportionality constant.
This bound can he rewritten in the form

3
m

Ld
1e2]

ly:]* -+ max & Re ‘—c_e"‘b > yf-] (24)
¥ L £=1 ._I
by using the identity Re z Rey = 4Re a2y + iRe ay.
The maximum required by (24) is obviously achieved
when ¢ = ¢ where

¥ =3 ag [Z y?} ,

i=1

(25)

which results in the following expression for the upper
bound on I,

<32 w43

i=1

(26)

Z;yl

To recapitulate, ! is bounded above as indicated in (26),
and this upper bound is achieved if and only if (23) is
satisfied with ¢ =  as given by (25). These conditions can-
not be met in general if m > 3 because there are then more
cquations than unknowns. When m = 3, the equations can
be solved by choosing 4, & so that

Re [y.e™"

Gi(0,9) _ Relpe ™ Gu(0,9) _ 1 en
Gi(8,8)  Relpe™]’ G0, Relye ¥’
where ¥ is given by (25), and then setting « = G500, )/

e {yse” "’] When (27) can be satisfied, I is given by the
expression

N+ el el S vl (28)

L= 4l

their right-hand sides.
The expression for [ given by (‘N) has an interesting
interpretation. It is a 1111,\tlee of an incoherent conibina-

tion of the beam voltages as given by the first term of the
expression and a coherent combination given by the second
term. Thc cohe ent combumt-mr is not the usual one
(s + 22 + wD, cather a coherent combination of

squares of the beam voltages. This has the effect of

weighting the hlgcr beam vol’& ges more he\wﬂy than the
. yat that a giral b}*t_
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cach of the bcams When this is the case, coherent combi-
Imtlon can y1eld a significantly lower output signal-to-
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etection function given by (28) and the angle esti-
e (97) are bhoth econcsiderably more diflficult

I DY (44 arc Do COnsIUCransy more Giriicul
to realize than their counterparts in the incoherent case.
The source of this difficulty is the tam ly; + vi + vl
Several attempts have been made to rewrite the pertinent
expressions in a form not containing such a term, but so far

no success has been achieved except in an important

ig 1ncfnnfr_\f] 1o the case of
SLICLeQd Lile

7 . 3
special case. When attention is

“two beams measuring » single target angle, it is possible to

write the solution in a form that is both el(,gant and rela-
tively easy to realize. '

The same kind of analysis given above leads to the
solufion of the two-beam problem as expressed by

[ = é‘[['yxli + Iyzln] + &l + vl (29)
G(0) _ Rely, e‘f} (30)
G0)  Re [y
¥ = 4arg (O + ¥i)- (31)
This solution is based on the assumption that

1(0)/G(6) =

can be solved for ¢, given any real value of x. These equa-
tions can be simplified by introducing the following change
of variables®

N = Y1 — Jlfe.
Substitution of (32) into (29) yields
1 2
[ = i{l%(’h + 772)‘2 727(“71 + Imﬂzl}
» 33)
= 33 Il + 3 Il + fnnel) (

= Hln| + [}

* The authors are gratcful to J. Sawyers of the Hughes Aireraft
Company, Fullerton, Calif., for pointing this fact out to them.
*s The authors are indebted to J. AMargolin of Lineoln Laboratory
for suggesting this change of variables.
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Similarly, substitution of (32) into (‘%O) and (31) yields®

e () = <TZ”3“!> (34)
and
G(B) _ _Re [(n + n)(nfni 2 H
O R (;- (e — 7)(nt 71")”)
_ Reflml (mn*)m + In| (o ny )”2]
T Im (] ()7 = fne] (i)
_ (m e (n,n))”
(Il A+ {mel) Im (g™
= cot }(arg m — arg n.). (35)

The realization of the two-beam receiver is now very
simple. The voltages n, and 7, can be obtained from the
matched filter outputs 7, and y, by means of a hybrid junc-
tion. The detection function [ is then formed with linear
envelope detectors and an adder, and a voltage proportion-
alto 2 cot™ G,(6)/G.(8) is formed by combining 7, and 7,

in a phase detector. This angle estimation scheme is very

similar to some of those described in [1] and [2].
One further point is worthy of mention in connection

with the problem just considered. Many practical two-
beam monopulse systems do not work diveetly with the

signals y, and ¥,, but rather with the sum and difference
signals y» = ¥, + ¥: and ya = ¥, — ¥ The antenna gain

functions associated with these signals are G:(0) =

G (0) + Go(6).and G5(0) = G,(0) — G.(0), respectively.
Since it is egtsxly verified that '

[G(0) + 10O _ lpsGal0) + y:G-(0)]
RORIGUN HORNOR

it follows that_the maximum- hl\ehhood receiver based on
» and y, performs exactly as well as the receiver based on
v, and ¥, and, in addition, has exactly the same structure.

Tlie advantage of this sum-and-difference beam approach
is that for many monopulse designs the function Ga(6)/
G:(6) 1s approximately linear in § for ¢ in the range of
interest. This fact greatly simplifies the circuitry needed
to implerent the estimation procedure.

Additional Unknown Parameters

In this section it will be assumed that the signal wave-
form depends on several other pammetelq denoted by the
vector ¢, in addition 1o those already considered. Thus,
the received signals ave of the form _

r(8) = AV G0, o)s(t, o) + 73,»@ =1, m (36)

in the Incoherent case and of the form
rf) = AeQ(0, s, o) + ni(t) (37)

i=1,+,m

§ Iither square root may be used. L o

in the coherent ease. It is still assumed that the signal is
normalized so that [ |s@¢, «)° dt =

A few moments’ thought will reveal that the only effect
the additional parameters will have on the solutions al-
ready obtained is to replace the old y, by

T
D = [ s, g a (38
o
and to require that the new I be obtained from theold

= I(e) by maximizing the lntter on e. For example, in the
incoherent, two-beam, one-angle problem,

:'l =V‘IVni1X n(e)]® + |y()]] (30;
G(0) _ ly(8)] \
G(8) ~ Jux(®)]” +0)

where @ denotes the value of e thut achieves the maximum

~in (39). The reader should experience no difficulty in ex-

tending all the other results of the previous section to the
case where additional signal parameters are unknown.

The additional maximization on e that is required when
caleulating ! often cannot be performed explicitly. When
this is the case, the usual solution is to use a bank of N-
filters matched to s{¢, o), - -+, s, ay) to simultaneously
caleulate the quantities [(e), - -, I{ay). The Iargest one
of these values is taken as the desired value of 1, and the e
for whicl it occurs is used as the estimate of «. This tech- -
nique will give satisfactory results as long as the values of
the «; arc sufficiently close together to give a reasonably
accurate picture of the function I(). Naturally, if the num-
ber of unknown parameters is large, this method may be-
come too unwieldy to realize in practice.

A concrete example of the procedure just desecribed

" arises when the additional unknown parameters are range

delay 7 and Doppler frequency f, i.c.,

s{t, @) = s(t — )e’”" " (41)
The quantity y:(s, f) can be formed by passing r.(f)
through a filter whose impulse response is s*(—£)e™ ™/ and
then sampling the output at time 7. 4 finite bank of such
filters spaced by the Doppler resolution of s(t) and span-
ning the range of expected Doppler frequencies often will
yield a close enough approximation to y:(r, f). The oper-
ation of the receiver for, say, the incoherent two-beam,
onc-angle problem now can be described. The outputs from
the two beams are processed in two identical filter banks of

the type just considered. The outputs from the corre-
sponding Doppler ehannels are detected in square-law de-

tectors, added, and then compared with a thle~hold

Whenever this threshold is exceeded, “target present”

~announced. The time of the peak response following the

threshold crossing is the eatmnted range delay, and the
flcqucncv of the Dappler channel having this peak re-
sponse is the estimated Doppler frequency. The ratio of

“the outputs of the square-law detectors is formed and used

to obtain the cstimate of target angle according to (10).
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RECEIVER PERFORMANCE

Recelver-Detection Characteristic

The receiver-detection characteristic (detectwu prob-
ability Py versus false-alarm probability P, orinformation
equivalent to this) has been caleulated for the two-beam,
one-angle and three-beam, two-angle incoherent receivers
and for the two-beam, one-angle coherent receiver..
analytical way of performing this caleulation for any of
the remaining cases has been found. '

The detection functions for the incoherent two-beam
and three-beam receivers are given by (14) and (13), re-
spectively. These equations yepresent the result of sum-
ming the quadratically detected envelopes of the pertinent
matehed filter outputs. ‘The probability distributicns of
such functions are quite easy to caleulate. As the details of
this caleulation are readily available in the literature [7],
[8], only the results will be given here. The false-alarm
probability Pp is given by

A=A
s == X —— - —— 42
P ‘““‘p( 4]\70) ?30 3] 4N0) ' (42)

where X is the threshold setting and 7 denotes the number
of beams in use. The detection probability Pp is given by

Py = Qu(VE/Ns, V2N,

where

Ouler, ) = [ ) 1(§)m exp (=37 + aNlos(er) dv (1)

denotes the generalized Q function and L _is the lccuved
signal encrgy,

]

. _‘1'2 2 ) .
B == Gio)
L pel
or "

2 3
E =5 32600 (45)
in the two- and three-beam cases, respectively.

The generalized Q function defined by (44) is closely
related to the incomplete Toronto function which has been
pl()[tul extensively by Marcum [7]. The use of these curves
in conjunction with (42) through (15) nzakes it possible Lo
construct curves of P versus Py for any desired signal-to-
noise ratio £/ N,.

The detection function for the two-beam. coherent re-
ceiver is given by (29) or, equivalently, (33). Equation (33)

represents the summation of two linearly detected REF

voltages », and 7, of the form _
= A[G(0) + G0 + &
= A[0(0) — jOu(0)]’” + &,

(46)
where

b= [ @) + 0l @
(1)

b= [ 1) — b

No

BNCE)

~ Note that & and & are statistically independent, identical-
" ly distributed, complex Gaussian voltages and note also

that the means of 5, and 4, have the same magnitude,
|E(m)| = |B [G(0) + GXB)]2. (48)

Thus, the quantity {n.] 4 7] is the sum of two linearly
detected RF vollages consisting of equalamplitude RI
signals to which statistically independent, identically dis-
tributed Gaussian noises have been added. The problem of
caleulating the probability distribution of such a sum was
attacked by Marcum [7] who, although unable to obtain a
closed-form solution, showed that the difference in per-
formance obtained by adding linearly detected voltages as
compared to quadratically detected voltages is negligible
for pm(,tlml purposes. The conelusion to be drawn from
this result is that the detection function [1,|* 4+ [n.|* will
perform almost as well as the optimum detection function
Im] 4 |ne]- Bub
l7h|2 + {772[2 = 2“?/112 -+ I!jzlz]r

and it follows that the two-beam coherent detector per-

forms about as well as the two-beam incoherent detector

that has already been analyzed. .

Angular Accuracy

The problem of caleulating exact cxpressions for the
means and variances of the angle estimates obtained above
is a formidable one. On the other hand, it is relatively casy
to obtain approximate expressions for these quantities
valid for high signal-to-noise ratios. This has been done by
Swerling [0] for the case of a real sealar signal masked by
‘additive Gaussian noise. It is a straightforward task to ex-
-tend his results to the case where the complex envelopes of
several waveforms arc observed simultancously. With this

- gencralization, Swerling’s resulls read as follows.

Given the complex envelopes r.(f), ¢ = 1, , m of the

form
?'.'(t) :7’3“(55 ‘Y) + ““(t) =1,

where s:(f; ) is the complex envelope of a waveform that
is known except for a finite number of unknown parameters
described by the vector o and where the noises #,(f) have
the properties described by (2) then, for large signal-to-
noise ratios, the maximum-likelihood estimate & of « is
unbiased,

(49)

, M,

) E( ) = « (50)
and has tlm covariance matrix
A= L& — a)(& — o)}
o 3s,(t; o) (as,-(l; «))* ]
- ) e - ¢
NO[Z} Ref Yo T dt (51)

In (51), the prime denotes the matrix transpose, the as-

Aerisk denotes conjugate-matrix transpose, and af(x)/dx

denotes a column vector whose kth component is 9/ (x) /0.
The covariance matrix given by the right-hand side of (51)
is the same as the Cramér-Rao [9], [10] lower bound for the
covariance matrix of any unbiased estimator of «; there-
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fore, it follows that for large signal-to-noise ratios the

maximum-likelihood estimate of « is optimum in the sense
that no other estumte can have a smaller covariance
matrix.” :

This general result now will be specialized to the mono-
For the m-beam co- -

pulse problems considered earlier.
herent system, the parameter vector is given by e =
[4, ¢, 8, ¢] and

8:(t; @) = Ae™-Gi(0, ©)s(t).

Making these substitutions in (51) leads to the following
asymptotic covariance matrix, o

2N, 7
IG{I* 0 1 4(G,G) A(G, G
0 A HGH“' 0 0
A6 Gy 0 LAT|GIP 4Gk G|
AG,G,) 0 A%(Ge, G 4° (|G, 1P

(53)

where G’ = [G,(8, 0), - - - , G..(0, ©)], (%, ¥) denotes the dot
product of the vectors x and y and |[x{|* = (x, x).

This matrix can be inverted by making use of Frobenius’
relation for the inverse of a partitioned matrix [11]. This
relation states that - '

[A,L:An} =[ '+AJAHA ™" ::i —ATALA 1
AL:AEZ‘ ) _‘A—‘A)lAu ,!, : ) A~‘ —

where

ORI

A = Azz - AzxA_xiAjw

If A is partitioned as shown in (53), it then follows that the

covarmnce matrix for the angle estimates alone is given by
'. Making the necessary substitutions now leads to the

result, -

Aoy =E[(0— 0,6 — (0 — 6,8 —0)]

1 [Hgfll? (&0, g»}“) (56)
“len e el
where the normalized gain vector g = =g(6, ¢) is given by
| =lsl” e, 57)
and the signal-to-noise ratio p is given by
b = (47/2Ny) [|GII". (55)

Some insight into the reason why the particular normal-
ization defined by (57) arises in this problem can be ob-
tained by noting that the received waveforms can be writ-
ten in the form

ri(t) = A e ||G]] 9:(6, 0)s(O) + n.(D). (59)
Thus, this normalization divides the cffect of the target

7 Two non-negative definite matrices A and B are said to satisfy
A <Bifand onlyif B —Ais non-nmrwtwe deﬁmte

(52)
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location into two parts. The first is the term {[G{f, which

is the same in all the beams and represenis a modification

of the signal amplitude A that is brought about by the
target location. The second is the term ¢;(8, @), which
varies from beam to beam and gives a measure of the ex-
tent to which target location produces differential changes
in the signal amplitude received by the various beams.
Viewed in this light, it seems natural that the first term
should affect the angular accuracy only through the
signal-to-noise ratio and that all the other factors in-
fluencing angular aceuracy should be expressible in terms

" of the normalized gnin funetions g;. This is exactly what is

expressed by (56).
The matrix appearing in (56) can be written in the form

R N g;)J
Ago = —= , (60)
pD [—(go, g.) el
where
= lleoll® llg.|I* — (8o 84)". (61)

The variances of & and @, as given by (60), have an inter-
esting geometrical interpretation. Noting the simple

identity,
r = e - ) el

it is seen that the variance of § can be written in the form

(o e Tl ngm“ (63)

The vector appearing in the denominator of (63) is the
component, of g, that is perpendicular to g,. This means
that when g, and g, are perpendicular, of is inversely
proportional to |lg.l|”.

This is & reasonable result because it states that the
more sensitive g is to changes in 6, the better will be them
aceuracy in measuring §. When g, and g, are not perpen-
dicular, however, the change produced in g by a change in
¢ has a component that could cqually well have been pro-
duced by a change in ¢. It is reasonable to suppose that
this component will reduce the measurement accuracy of ¢
and that the useful sensitivity of g to changes in ¢ is given
by the vector g, minus that component of g, that lies alono
g,, 1e., the vector g0 — (g0, 8./1|2.{))g./llg,||- This seems
to be the reason why the variance o} is inversely propor-
tional to the squared modulus of the latter vector and not
to ||gol|® when g, and g, are not perpendicular.

It will now be shown that the large signal-to-noise ratio
angle-aceuracy formulas just derived for the m-beam co-
herent reeeiver are valid also for an m-beam incoherent
receiver. This means that at large signal-to-noise ratios_

(62)

a'; =—E(é — 0)2 = =

‘coherent processing offers no advantages over incoherent

processing.
The starting point for this analysis is (51), where ¢ and
s;(t, o) are now given by

@ = [\[/h )¢va707<Pl

sil, @) = A VG0, s  E=1,--+,m. (64
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Substitution of (64) into (51) yields the result
A= 2N o

AN Lot R
;HGH A(G, G) 4G, G,) ’

O3 m i A7 |G| [* 4%(Gy, G)

| symmetric A |G IP

(65)

where Inx. denotes the (m X m)-dimensional identity

mairix and 0.y, denotes the (m X n)- (hmenqon'd 2610
matrix.

Application of Frobenius’ relation, (54), to (G.)) leads

easily to the following formula for the covariance mm ix
of the estimates for A, 8, and ¢,

B{IA — A, 0—0,¢ —¢l'ld — 4,0 — 0,6 — o]}
HIGIT 4G, G) 4G, 6, T
= 2A70 112 ”G‘”2 le(Go, G\»’) (GG)
symmetric A |G, |I?

Another application of Irobenius’ relation now leads to

the desired covariance matrix for § and @,

Aoy = [Hgonz (&, ﬂ,l
g gl

(67)

This covariance matrix is the same as the covariance ma-
trix that we derived for the coherent receiver, (56).

As an application of the preceding accuracy formulas,
cousider a four-beam, two-angle monopulse system cm-
ploying “product beams” arranged on a rectangular grid,
ie.,

10, &) = Pi(0 = 0)P(e — ipo)
G20, ¢) = Pi(0 — 0)P.(e + ¢o)
G50, ¢) = Pi(6 + 0)Px(e — ¢0)
G0, ) =Pi(0 4 8o)Ps(e + w0)

where P, and P, are Ienown functions and 28, and 2y, de-
note the known beam separations in azimuth and eleva-
tion, respectively.

Substitution of (68) into (67) yields, after much tedious
but straightforward algebra, the following expression for
the asymptotic variance of the azimuth estimate, o

[1)1<0 “f" 0()) + ])1(0 — 00)]

) (63)

[P’(o ¥ o) P (0 — e{,)}
Po+ 6) P(0 — 0,
where the prime denotes differentation and
A7
g —
A [P3(8 + 05) + Pi(0 — 0.)]
((Pile F @) + Pile — @a)l. (70)

Loy =

(6* 4 o)
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A similar expression holds for the &b} mptotic variance of
the elevation estimate and it can be shown that the two
estimates are asymptotically uncorrelated.

An interesting special case of (69) can be obtained by
asswming that the beam shapes are Gaussian with equal
widths.

Pile) = exp (—¢*/26%).  (71)

This assumption leads to the expression,

P.(8) = exp (—6°/257),

2 N,

i (5)
2.‘12 90

(99 + G/n) cosh (9000/0') ] ('—-9)

&P cosh (266,/°)

- exp 3

a
~ The accuracy formulas also are useful for comparing an
optimum monopulse system with various suboptimal sys-
tems, which may be desirable because of the ease with
which they can be implemented or for other reasons. An
example of such a suboptimal system is a “conventional”
four-beam coherent monopulse system. Such a system
starts with four beams of the form

G,(&, <pj G(0 — 85, 0 — o)
Gz(é, {,n) = Q(0 — by, v + ¢o)
G0, ¢) = GO + 86,0 — o)
Gi(0, 9) = G(0 + 00, ¢ + o)

73

and their associated matched filter outputs ¥y, ¥s, ¥s, and
ys. An estimate of the azimuth angle 8 is obtained by ap-
plying two-heam onc-angle maximum-likelihood process-
ing, (30) and (31), to the derived signals y. -+ ¥ and
s + 4, assuming that the appropriate antenna gain fune-
tions are G.(6, 0) + (.(0, 0) and G4(6, 0) + G4(6, 0), re-
spectively. Tn other words, the “conventional” receiver
arrives at an azimuth estimate § by solving

G\(0,0) + Gu(0,0) _ Re (g + ™1
Gy(8,0) + Gi(8,0) ~ Re [(s + y)e™ 1"
where
b=t +u) + @+l )

In actual practice, the sum-and-difference signals (v, + ¥2)
+ (ys + ) and (; + ¥5) — (U5 + ) with the associated
gains [(4(6, 0) + Go(8, 0)] + [Ga(0, 0) + G.(6, 0)] and

-[GL(6, 0) + G.(0, 0)] — [(:(6, 0) + G4(0, 0)] are used to

determine 8. This is equivalent to the procedure defined by
(74) and (75), as was pointed out earlier.

The elevation estimate ¢ is obtained by applying a
similar procedure to the derived signals 7, + ¥, and y» +
ys using G1(0, ©) + G4(0, ¢) and G50, ¢) -+ G5(0, ) as gain

- funclions.

The reasoning behind the p}occdme just deseribed is
based on the fact that the beam shape G and the beam
separations 6, and ¢, u'au‘mlly can be chosen so that G,(0, ¢)
+ Go(0, 0) and G4(8, ¢) + (.(8, o) arc approximately inde-
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pendent of 8. This being the ease; it is natural to attempt

to simplify the receiver by assuming the above mentioned

gains are exactly independent of ¢ or 8 as the case may be.
This assumption leads directly to the estimation procedure
deseribed by (7:) and (75).

The large signal-to-noise ratio performance of the sys-
tem deeribed by (74) and (75) can be derived by approxi-
mating the right-hand side of (74) to first-order noise terms
and the left-hand side to fivst-order terms in § — 6, where 0
denotes the true azimuth angle. The expansion of the
right-hand side uses the true gains, G,(8, ¢) + G.(6, ¢) and
G.(8, 0) + G,(8, ©), Tather than the assumed gains, G, (6, 0)
4+ Go(0, 0) and G4(0, 0) + G,(6, 0). The results of this
procedure are that the aximuth estimate § has an asymp-
totic mean given by '

Ty(0) Gu(8, ¢) + G0, ¢) _
I‘l(e) VVG;‘(O}, <P> + G»l(g' (F)
ri(e) 10
Ty(6)  Ta(6)

-1

E(6) = § +

where the prime denotes differentation, 8 and ¢ are the
true azimuth and clevation, and

Gi(0,0) + G.(0,0)

no) = 77)
T,(0) = Gy(8, 0) + G,(0,0). '
The asymptotic variance of 0 is given by
sl e
() = AN, L) U " 160, ¢) + G0, 9) 1) 8)

A" I'Ti(0) M@T .
Specialization of these formulas to the case of the prod-
uch beams defined by (68) yields the l'esult}

E(f) = 0
_ [1)1(6 +6) , P8 — 0 )
A Pre— ot Pis o)
o’f(é) _ _2_ ! 1(0 - 00) _ R!(a "}:fﬁ] PR (79)

T [19;(04—on>,_«zjggg'-l en)]’
P8+ 6) (0~ )

where

*

' = Ao+ 0 + PO — )]

P=§’N—'O

° [P?(\‘g + ‘:”0) + PZ(‘P — ¢())]2~ (8—0)

o) 2 2

- T (76)
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Comparison of (79) and (69) shows that the ratio of the

“conventional” system is given by

,1 ]i.:(@“{‘ Q’f‘o)j?[
[1+I’z¢ = ) b

]_Di(f_‘*“. - ¢u) ] o .
1 )::;((r’) — 9’90)
81

Tt is casy to bound the right-hand side of (S1) above and

below with the result®

1< S0/ <1,

‘estimation variance of the optimum system fo that of the

82

" which states that the azimuth-estimation variance of the

conventional system can be no more than twice the vari-
ance of the optimum system. Stated in somewhat different _

terms, this means that the asymptotic azimuth-estimation
aceuracy of a “conventional” monopulse system can be

made equal to thal of an oplimum system by increasing

the transmitted signal power by no more than 3 dB.

" REFERENCES

[11 D. R. Rhodes, Introduction to I onopulse. New
- MeGraw-ITi1, 1950,

[2] W. Cohen aund C. M. Steinmelz, “Amplitude- and phase-
sensing monopulse system parameters,” Microwave J., pt. I,
pp. 27-33, October 1959; pt. 1L, pp. 33-38, November 1959.

[31 ¥. J. Kelly, 1. 8. Reed, and W. L. Root, “The detection of
radar cchoes in noise,” J. SIAJM, vol. §, pt. I, pp. 300-341,
June 1960; pt. II, pp. 481-507, September 1968.

[4] U. Grenander, “Stochaslic processes and statistical inference,”
Arkiv Malemalik, vol. 1, pp. 195-277, April 1950.

York:

T [5] J. W. McGinn, Jr.,, “Thermal noise in amplitude comparizon

monopulse systems,” IEEE Trans. Aerospace and Electronic
Systems, vol. AES-2, pp. 550-556, September 1066.

[6] H. Urkowilz, “The accuracy of maximum likelihood angle
estimates in radar and sonar,”” IEEE Trans. Militury Elec-

tronics, vol. MIL-8, pp. 3945, January 1964,

[7] J. I. dlavcum, “A stalistical theory of target deteclion by
pulsed radar,” IRE Trans. Information Theory, vol. IT-G,
pp. 59-267, April 1960.

[8] C. W. Helstrom, Statistical Theory of  Signal Delection.” New
York: Pergamon, 1960, pp. 171-176.

(9] . Swerling, “Parameter estimation accuracy formulas,”
IEEE Trans. Information Theory, vol. IT-10, pp. 302-314,

October 1964.
[10] IX. Cramér, Alathematical Methods of Statistics. Princeion,
N. J.: Princeton University Press, 1046, pp. 477-407.

[11] E. Bodewig, Matriz Calculus. Amsterdam: North-Holland

Publishing Co., 1956, p. 188. '

8 The lower bound is based on the assumption that Pale - @)/
Polo — ¢o) > 0. This condition will be ret, at least for angulur

- directions of interest, in any well designed monopulse system.
f=1 }

Vialation of this condition implies that signals are being added in

phase opposition when the beams @y + s and G; + Gy are formed.

Thly is a situation which surely will be avoided in the design of
any practical monopulse system. N



