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Abstract— A historical study of the development of information 
theory advancements in the first few years after Claude E. 
Shannon’s seminal work of 1948 is presented.  The relationship 
between strictly mathematical advances, information theoretic 
evaluations of existing communications systems, and the 
development of engineering theory for applications is explored.  It 
is shown that the contributions of American communications 
engineering theorists are directly tied to the socially constructed 
meanings of information theory held by members of the group.  
The role played by these engineering theorists is compared with 
the role of American mathematical scientists and it is also shown 
that the early advancement of information is linked to the mutual 
interactions between these two social groups. 
 

I. INTRODUCTION 
Although information theory had multiple versions at the 

time of its conception, including the theories of Norbert 
Wiener, Donald MacKay, and Dennis Gabor, Claude E. 
Shannon’s statistical variety of information theory quickly 
came to predominate and now forms the basis of the field, 
delineated by its modern definition as the processing, 
transmission, storage, and use of information, and the 
foundations of the communication process [1].  Perhaps 
presumptuously, in 1953 Colin Cherry wrote of information 
theory’s importance, “Man’s development and the growth of 
civilisations has depended in the main on progress in… his 
abilities to receive, communicate and to record his knowledge” 
[2], however the tremendous growth of the field in the first few 
years after its establishment by Shannon’s seminal paper of 
1948, [3] corroborates its perceived importance at the time.   

After Shannon’s initial work, there were grand visions for 
the application of information theory to such diverse fields as 
biology, linguistics, physics, and engineering, and the hope 
that these fields would be able to contribute advances.  The 
growth of information theory in American engineering is seen 
by the establishment of the Institute of Radio Engineers 
(I.R.E.) Professional Group on Information Theory in May 
1951, the three technical sessions devoted to information 
theory held at the I.R.E. National Convention in March 1952, 
and a symposium on information theory, with five technical 
sessions, that was held in New York City in October 1952 [4].  
In addition to emerging American interests in information 
theory, work was being done by Aleksandr Khinchin [5] and 
others [6] in the Soviet Union, as well as Philip Woodward [7] 

and others in the United Kingdom.   
This paper will comprehensively trace the early progress of 

information theory in the American engineering community 
and also touch on the course that information theory took in 
the American mathematics community.  As the early 
development of information theory was being made, social 
meanings of the nascent field were just being constructed and 
incorporated by the two different social groups, mathematical 
scientists and communications engineering theorists.  The 
meanings constructed had significant influence on the direction 
that future developments took, both in goals and in 
methodology.  Mutual interaction between the two social 
groups was also highly influenced by these social meanings.  
In the half century since its birth, Shannon information theory 
has paved the way for electronic systems such as compact 
discs, cellular phones, and modems, all built upon the 
developments and social meanings of its first few years. 

II. MATHEMATICAL SCIENCE AND ENGINEERING THEORY 
The complex relationship between science and technology 

pervades the history of electrics and electronics.  Counter to 
the widely held belief that technology arises from science or 
that it is simply the handmaiden of science, numerous 
occasions have shown that in fact, the interaction between 
science and technology has been defined by mutual influence, 
spurring advances in both scientific understanding and 
technological development [8].  The invention and 
enhancement of electrical and electronic communication 
technologies such as the telegraph, telephone, and radio, and 
developments in electromagnetic and electronic theory in the 
nineteenth century and early twentieth century typify the 
interplay between technologists and physical scientists [9].  
Throughout this time, however, the many coding, modulation, 
and compression techniques developed for telecommunication 
relied solely on the knowledge, skills, and principles 
developed by engineers themselves, with little influence from 
mathematical scientists.  By the 1920s, a process of 
mathematization of communication theory had started, 
initiated by Harry Nyquist, Ralph V.L. Hartley and others [10].  
By the late 1940s, the necessity for a theory that included the 
fundamental tradeoffs among transmission rate, bandwidth, 
signal to noise ratio, and reliability was recognized by many 
researchers including A.G. Clavier, C.W. Earp, Stanford 
Goldman, Jacques Laplume, Claude Shannon, William Tuller, 
and Norbert Wiener [11]-[12].  Claude Shannon’s “A 
Mathematical Theory of Communication,” published in 1948, 
came to prepotency and formed the basis of the field that is 
now known as information theory.   
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Two different social groups have made significant 
contributions to information theory, communications 
engineering theorists and mathematical scientists; however 
defining these two groups is not a trivial matter.  In fact, some 
have suggested that the merger between science and 
engineering was an important feature of the period after the 
Second World War [13].  In 1941, Thornton C. Fry, a 
mathematician in the Bell System, tried to define 
mathematicians entirely by the way they thought, rather than 
the academic credentials they held.  In particular, he felt that 
mathematicians were defined by confidence in reasoning rather 
than experiment, requirements for perfection in arguments, 
tendencies for idealization, and desire for generality.  Further, 
he held that the engineer was convinced by experimental 
evidence, believed the requirement for perfection in argument 
to be hair-splitting rather than rigorous thinking, and over-
idealization to be ignoring facts [14].  Following the general 
concept of Fry, I will differentiate the two social groups not by 
academic credentials, but with a definition based on the 
socially constructed meaning of information theory held.  
Socially constructed meaning is defined to be the perception of 
a particular field of inquiry or a particular technology held by 
the social group.  Within the first few years of the 
establishment of information theory, communications 
engineering theorists made many efforts to incorporate, apply, 
and develop the field.  Mathematical scientists, however, did 
not pursue information theory until the mid-1950s.  The 
specific contributions made by each group, the chronology of 
the contributions, and the mutual interaction between the two 
groups can be attributed to the meanings of information theory 
that were constructed by each.   

Some engineering theorists saw information theory as 
science that would allow a theoretical basis for the evaluation 
of information sources and existing communications systems.  
Other engineering theorists saw the fundamental bounds on 
communications that information theory established as an ideal 
to work towards, through the development of new 
communication schemes and systems.  These engineers felt 
that it brought a concrete foundation to the task of 
communications engineering.  As Jerome Wiesner, director of 
the Massachusetts Institute of Technology’s Research 
Laboratory of Electronics said in 1953, “Before we had the 
theory, … we had been dealing with a commodity that we 
could never see or really define.  We were in the situation 
petroleum engineers would be in if they didn’t have a 
measuring unit like the gallon.  We had intuitive feelings about 
these matters, but we didn’t have a clear understanding” [15].  
There were, however, a group of communications engineers 
and engineering theorists that held the private opinion that 
information theory was too abstract for any real purpose or 
application [16].  Mathematical scientists saw Shannon’s work 
in a very different light, thinking of it as unimportant at first.  
Later, the meaning shifted to that of an engineer’s sketch 
requiring added mathematical rigor to fully construct the field 
as a true mathematical discipline.  Mathematical scientists and 

communications engineers worked on different aspects of 
information theory, yet their contributions were 
complementary.  In some instances, the mutual interaction 
between the two groups resulted in developments that might 
not have been achieved if only one aspect of information 
theory had been pursued. 

III. SHANNON’S INITIAL FORMULATION  
Although the information theory of Claude Shannon was 

built upon previous ideas, it was in many regards strikingly 
novel.  As Robert J. McEliece, then of the California Institute 
of Technology’s Jet Propulsion Laboratory retrospectively 
wrote in 1977, “While, of course, Shannon was not working in 
a vacuum in the 1940s, his results were so breathtakingly 
original that even the communication specialists of the day 
were at a loss to understand their significance” [17]  Looking 
back in 1973, John R. Pierce, who saw Shannon as a hero [18], 
hailed information theory as shedding “about as much light on 
the problem of the communication engineer as can be shed” 
[19].  Even a more neutral observer, Fortune magazine, said in 
1953 that information theory bore the hallmarks of greatness 
[20].  Thus an examination of information theory’s conception 
by Shannon serves to elucidate the origins of the relationship 
between mathematical and engineering thought in information 
theory.   

Claude Shannon was academically trained as both an 
electrical engineer and a mathematician, earning bachelors’ 
degrees in both subjects at the University of Michigan, 
followed by a master’s degree in electrical engineering and a 
doctorate in mathematics at the Massachusetts Institute of 
Technology (M.I.T.).  After receiving his doctorate in 1939, 
Shannon spent one year as a National Research Fellow at the 
Institute for Advanced Study (I.A.S.) in Princeton, studying 
mathematics and Boolean algebra under Hermann Weyl, a 
mathematician and mathematical philosopher [21]-[22].  
Shannon said that one of the questions motivating his early 
work on information theory was whether television could be 
compressed into a smaller bandwidth [23], but also that the 
idea of an information measure with an entropy form occurred 
to him while at I.A.S. [24].  After taking a position at Bell 
Laboratories, Shannon developed much of his information 
theory at home on nights and weekends during the 1940-1945 
period, and only after much urging from his supervisor, 
Hendrik Bode, and colleagues did Shannon finally publish his 
work in 1948 [25].   

Certainly a superior understanding of stochastic processes, 
n-dimensional geometry, and the philosophical meaning of 
communication were vital to Shannon’s development of 
information theory, but just as important was his engineering 
knowledge of various modulation techniques and 
cryptography.  In fact, Shannon’s wartime Bell Laboratories 
confidential report of 1945, “A Mathematical Theory of 
Cryptography,” uses many of the information theory concepts 
that he was simultaneously developing [26]-[27].  The 
synthesis of mathematical science and engineering knowledge 
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led to information theory.  Shannon’s own perception of 
information theory was as mathematical science, stating in 
1956 that, “The hard core of information theory is, essentially, 
a branch of mathematics, a strictly deductive system” [28].  
Many other engineering theorists followed this social 
construction to a degree, but recognized its practical 
importance as well.  An article in the Bell Laboratories 
Record, a monthly magazine with a general electrical 
engineering audience, referred to information theory as a 
subject which, “in certain applications becomes a complex 
mathematical subject” [29].  Joseph L. Doob, a probabilist, 
however, commented in Mathematical Review that in 
Shannon’s work, “The discussion is suggestive throughout, 
rather than mathematical, and it is not always clear that the 
author’s mathematical intentions are honorable” [30]. 

The first idea presented by Shannon is that of a general 
communication system, with an information source that 
generates messages, a transmitter that encodes messages into 
signals, a possibly noisy channel through which signals are 
sent, a receiver that receives signals and decodes messages, 
and a destination for the messages.  Then he considers 
noiseless channels, and defines the channel capacity to be the 
logarithm of the number of possible symbols that can be sent 
in one channel usage.  After a survey of various information 
source models, he introduces the concept of entropy, a 
statistical measure which defines how much information the 
source produces, based on the uncertainty of producing 
various messages.  The more uncertain a message is, the more 
information it conveys.  A fundamental theorem of information 
theory is then established, namely that if and only if the 
information rate (entropy) of the source is less than the 
capacity of the channel can the encoder encode the message so 
that it can be transmitted over the channel.  This theorem is 
extended to noisy channels, and again it is shown that if and 
only if the rate of the source is less than or equal to the channel 
capacity, can messages be encoded so that they will be 
received with arbitrarily small probability of error.  That is to 
say, the source must be matched to the channel for reliable 
communication.  The first part of the paper deals with discrete 
sources and channels; extensions to continuous channels and 
sources complete the main ideas of the work [31].  Before this 
work, it was commonly held that as the channel became 
noisier, then the rate would have to become smaller and 
smaller until one could not transmit any information (the 
conclusion one would draw from investigating repetition 
coding methods).  The great revelation provided by Shannon 
was that no matter how noisy the channel, some information 
could still be transmitted [32]. 

IV. INFORMATION THEORY AS SCIENCE 
The engineering theorists that constructed information 

theory as mathematical science needed to characterize 
information sources in the information theoretic way to apply 
it to communication systems.  Shannon himself was “specially 
concerned to push the applications to engineering 

communication” [33].  Towards this goal, Shannon developed 
methods to measure the redundancy and entropy of language, 
publishing results in 1951.  Using an experimental approach, 
the statistical nature and redundancy of printed English was 
determined through the use of human subjects’ predictive 
powers, rather than the mathematical approach of determining 
the stochastic process that governs language production.  For a 
given sentence, subjects had to try to guess the next letter 
based on the previous letters, and the average number of 
guesses determined the entropy [34].  One of Shannon’s 
favorite sentences for this type of experiment was There is no 
reverse on a motorcycle a friend of mine found this out rather 
dramatically the other day [35].  Shannon’s work on 
cryptography was released in the open literature in 1949.  
Cryptographic enciphering schemes based on language texts 
were discussed in the context of information theory, and the 
entropy of message sources and keys was determined.  He 
found that complete concealment is only possible if the key 
entropy is at least equal to the message entropy [36].  While 
Shannon considered language, many communications 
engineers considered more prominent objectives such as 
telephone and television systems that, “as one Bell Labs 
engineer phrase[d] it, ‘ignore the past and pretend each 
[message] sample is a complete surprise’” [37].  Bell’s Ernest 
R. Kretzmer experimentally measured statistical quantities 
characterizing picture signals, and used these results to 
estimate the amount by which channel capacity can be reduced 
for television transmission by the exploitation of the statistical 
distribution in 1952 [38].  In the mid-1950s, a reasonably 
simple code was designed by Michel, Fleckstein, and Kretzmer 
to transmit drawings and diagrams by facsimile, using only 
about 12 percent of the rate of a conventional system [39].  
The most conspicuous practical success of information theory 
actually came in color television transmission [40].   

At the time of information theory’s origin, the art of 
communications was at a very advanced state.  The 
communications engineer could use amplitude modulation, 
frequency modulation, phase modulation, single sideband 
modulation, or pulse code modulation, or easily invent 
something new [41].  In order to use the channel capacity 
aspects of information theory, extended beyond the original by 
Shannon in his 1949 work, “Communication in the Presence of 
Noise” [42], it was necessary to characterize existing 
communication systems.  Nelson Blachman did that by 
characterizing the channel capacity of various modulation 
schemes with different noise levels.  He also found the 
optimum statistics of communication systems consisting of an 
amplitude modulated and/or phase modulated transmitter, a 
transmission medium, and a receiver that responds to the 
amplitude and/or phase of the signal.  He also found that only 
using amplitude modulation or only using phase modulation 
reduces the information rate below capacity and that at very 
high signal to noise ratios, amplitude modulation and phase 
modulation each account for half of the channel capacity [43].  
The derivations of the optimal statistics were more 
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mathematical than the experimental statistics derived for 
sources, but the mathematics used was of an engineering 
theory style, rather than a mathematical science style.  That is 
to say, specific modulation schemes were transformed using 
Fourier analysis, specific probabilistic noise models were 
introduced, and particular decoding schemes were specified.  
The results were characterizations for specific conditions, 
rather than mathematical science results of proving general 
theorems.  In a similar work, Erling D. Sunde developed a 
compendium of theoretical fundamentals relating to pulse 
transmission for engineering applications.  Again, the 
characterization, although mathematically-based, was specific 
to systems with either low-pass, symmetrical band-pass, or 
asymmetrical band-pass characteristics.  Discussion on random 
imperfections in a communication system, as opposed to 
random noise, was also discussed [44].  This topic is clearly of 
interest to communications engineers, rather than mathematical 
scientists who in their assumptions of ideality assume ideal 
random noise as well.  A desire to apply the science of 
information theory to communications engineering led to the 
characterization of sources and existing systems in information 
theoretic terms.   

V. INFORMATION THEORY AS AN IDEAL 
Another group of engineering theorists perceived the results 

of information theory not just as a way to characterize current 
systems, but as an ideal of optimal performance to work 
towards.  The goal was to achieve the maximal information 
rate.  Steven O. Rice described two encoding schemes in 
which the ideal rate of information transmission in the 
presence of noise is approached.  He considered two explicit 
construction schemes for choosing the transmitted signal and 
gave an exact result for the probability of error of the decoded 
message.  Through numerical approximations, he showed that 
both schemes approach the ideal rate of transmission in the 
presence of random noise when the signal length is increased 
[45]-[46].  David A. Huffman was able to develop an 
algorithm to construct the optimal instantaneous source code 
in 1952 [47].  His motivation came from the fact that the 
coding procedure developed by Shannon and Robert Fano of 
M.I.T. was not optimum, but approached the optimum 
behavior only when the block length approached infinity.  No 
definite procedure had been conceived for the construction of 
an optimum code, until Huffman’s derivation for a project in 
Fano’s class at M.I.T.  Thus, engineering theorists were able to 
make some progress towards developing constructive, though 
still theoretical, methods for achieving optimum 
communication.   

Various engineers and engineering theorists tried to 
incorporate information theory-inspired designs into complete 
communications systems, but “it was shown that there are 
inherent difficulties in approaching the theoretical maximum 
rate of information transmission.  Drastic attempts to approach 
the ideal lead to excessive complication of apparatus” [48]  
For example, John P. Costas of the General Electric Company 

in Syracuse, N.Y. noted in 1952 that in most communication 
systems, the opportunity for coding before transmission exists 
and that complex coding processes had been developed.  
However, applications of these coding techniques “will be 
restricted by the complexity of the terminal equipment 
required” [49].  Shannon commented on the application of 
information theoretic ideas to telephone memory design, but 
conceded that, “incorporating this feature appears too 
complicated to be practical” [50].  Arthur W. Horton, Jr. and 
H. Earle Vaughn studied methods of transmitting and 
receiving short coded messages of about 10 decimal digits in 
length over telephone lines with simple and reliable equipment 
and at the highest speed possible with reliable operation.  They 
determined that when the complete message to be sent is short, 
the advantages of one code over another are not great, and so 
information theory provides nothing useful [51].  Those 
engineering theorists who had constructed information theory 
as an ideal to work towards achieved some successes, but other 
setbacks because the theory’s bounds could only be 
approached with coding of great complexity and delay.  In this 
way the physical devices of communication set tighter bounds 
on achievable communication than information theory.  Later 
developments in solid-state electronics and digital computers 
would allow some of information theory’s greater successes to 
be achieved.  After all “A theory builds no machinery.  But 
inevitably, when good theories are enunciated, they make 
machinery easier to build” [52].  

In a strong departure from most communications engineers, 
Edgar N. Gilbert of Bell Telephone Laboratory felt that the 
information theory coding theorems themselves were not 
applicable to the telephone industry.  The reason being that the 
theorems state that the average error probability becomes 
arbitrarily small, but that the error probabilities for specific 
letters in the alphabet are allowed to be high.  Consequently 
when transmitting phone numbers for example, it is possible to 
miss specific numbers.  Gilbert concluded in 1952 that error-
correcting codes are much more suited for the telephone 
industry [53].  Although Gilbert’s view differed from many 
engineering theorists, it corresponded to a certain extent with 
the view of information theory held by mathematical scientists.  

VI. MATHEMATICAL SCIENTISTS’ CONCEPTIONS 
In the first few years after the establishment of information 

theory, communications engineering theorists had pursued 
applications of information theory to various systems and 
sources, and had advanced the theory, but mathematical 
scientists took very little interest in the subject.  “A conviction 
on the part of mathematicians that Shannon had done 
something important and a motivation to search for proofs 
more satisfactory to them” [54], had not emerged.  Brockway 
McMillan, a research mathematician and colleague of Shannon 
at Bell, took the first steps in changing this perception by 
presenting an exposition and partial critique of Shannon’s 
models for communication systems in a mathematical journal 
[55].  Many of the contributions made by mathematical 
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scientists to information theory dealt with error-correcting 
codes, first described by Bell’s Richard W. Hamming in 1950 
[56].  David Slepian, also of Bell Laboratory, described in 
1956 a class of binary signaling alphabets, generalizations of 
Hamming’s error correcting codes, called group alphabets for 
use in binary symmetric channels.  Peter Elias of M.I.T. had 
previously shown that there exist group alphabets which signal 
at a rate arbitrarily close to the channel capacity of a binary 
symmetric channel with arbitrarily small probability of error 
[57].  These works firmly established the relationship between 
information theory and algebraic coding, and strongly 
established information theory as a true mathematical 
discipline within the social group of mathematical scientists.  
In 1966, Gilbert would comment on Shannon’s paper, 
“Mathematicians found his paper a gold mine of statistical and 
combinatorial problems… mainly because he raised difficult 
mathematical questions which… are unanswered” [58]. 

By the time Jacob Wolfowitz, a professor of mathematics at 
Cornell University, proved a channel coding theorem about the 
probability of transmitting any word incorrectly in 1957 [59], a 
change in perception of information theory in the mathematical 
science community from useless to incomplete had occurred.  
He refers to Shannon’s A Mathematical Theory of 
Communication, as a “fundamental and already classical 
paper” [60].  Wolfowitz’s motivations for proving the strong 
channel coding theorem were twofold; one arose from the need 
for mathematical rigor, whereas the other derived from 
engineering theory.  Shannon’s proof of the channel coding 
theorem is based on random codes, but it seemed questionable 
to mathematicians, “whether random codes are properly codes 
at all” [61].  Wolfowitz went on to say that “the desirability of 
proving the existence of an error correcting code which 
satisfies the conclusion of the coding theorem has always been 
recognized and well understood” [62], referring to Gilbert’s 
claim that error correcting codes should be used in the 
telephone industry.  The mutual interaction between 
engineering theorists’ desire for theorems about transmitting 
error correcting codes and mathematicians’ desire to make the 
coding theorem more rigorous resulted in Wolfowitz’s strong 
noisy channel coding theorem.   

VII. CONCLUSIONS 
Pre-information theory inventions such as the Morse Code, 

the vocoder, the compandor, and pulse code modulation [63] 
demonstrate that even without the support of mathematical 
science or engineering theory, engineers were able to achieve 
efficient communications technologies.  Shannon, in 1956, 
opined that while “information theory is indeed a valuable tool 
in providing fundamental insights into the nature of 
communication problems and will continue to grow in 
importance, it is certainly no panacea for the communication 
engineer” [64], engineering ingenuity is still essential.  During 
the formative period of information theory’s establishment as a 
discipline, both engineering theory and mathematical science 
approaches led to developments that would eventually assist 

the practicing engineer.  Engineering theorists pursued 
information theory for that very purpose, and mathematicians 
produced results as a byproduct of their quest for mathematical 
rigor.  Although the results of information theory remained 
strictly on paper during this period, later growth in electronic 
communication, and particularly digital communication, would 
come to rely on them.   

The socially constructed meanings developed by 
engineering theorists and mathematicians during information 
theory’s formative period not only determined the research 
directions pursued at the time, but also set the course of the 
field for long afterwards.  The mutual interaction and influence 
between the two groups that was a hallmark of the early period 
has also continued.  To this day, both mathematicians and 
engineering theorists contribute to the advancement of 
information theory in their own ways, based on their own 
socially constructed meanings, so that more insights become 
apparent and applications become more optimal.  Sometimes, 
engineering knowledge and ingenuity are necessary to make 
advances, and sometimes “the mathematical crank does turn to 
good advantage” [65], yet other times the interaction of the 
two is requisite for the advancement of information theory.   
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