NISSAN FINGERPRINT ENTRY SYSTEM

See "Vehicular Electronics," page 10
Will your office of the future be your automobile? The answer is Yes for many, thanks to mobile communications and information systems. On-board computers can not only keep track of time and distance to destination but offer database capabilities as well. The Yellow Pages and your own customized phone list may be as close as your dashboard. While this is not yet a reality for most of us, in-vehicle computer terminals and facsimile machines linked to mobile telephones are appearing in increasing numbers.

We clearly are spending more time in our automobiles. Data from the U.S. Federal Highway Administration shows that, between 1960 and 1986, the number of automobiles in the U.S. tripled and the total distance driven went up by a factor of 2.6 to over 1.8 trillion miles in 1986. 61 percent of urban interstate highways were congested in 1985, compared with only 40 percent ten years earlier. Other countries are experiencing similar growth in demand, outstripping the capacity of the highway infrastructure to keep pace.

The first IEEE Vehicle Navigation and Information Systems conference revealed the work being done around the world to combine computers and communications with navigation and traffic control systems to improve traffic efficiency and reduce time lost in traffic jams. 12 percent of the time and 6.4 percent of the distance traveled by noncommercial vehicles in the U.S. is wasted, for a cost of over $45 billion per year in time value, operating costs, and accidents. The number does not include added costs for highway maintenance and air pollution control.

Traffic advisory systems are being tested in pilot projects worldwide, aiding the motorists in selecting the best route to his destination in the face of existing traffic congestion. With thousands of informational messages defined, these systems can provide displays and voice announcements in the vehicle, in the language chosen by the motorist.

Interactive traffic control systems, using the movements of "traffic probe" vehicles, interrogated through transponders, as flow indicators, can adjust the traffic light pattern to match existing conditions, adding only 2 percent to the total cost of the traffic control system. Automatic braking and collision avoidance systems on vehicles can reduce the required headway between vehicles for safe travel, thus increasing the traffic carrying capacity of existing roadways.

Vehicular technology is thus working both sides of the street-to improve the flow of traffic and reduce driver frustration on the one side, and offering the conveniences of the office on the other side to offset travel disappointment when the highway becomes a long skinny parking lot.

George F. McClure
1730 Shiloh Lane
Winter Park, FL 32789-5837
(407) 356-3782 (office)
(407) 356-7566 (fax)
Society Officers and Board of Governors

SOCIETY OFFICERS

PRESIDENT:
GEORGE F. McCULLEN
Martin Marietta
P.O. Box 3837, MP52
Orlando, FL 32855
(407) 356-3782

VICE PRESIDENT:
ROGER MADDEN
Federal Communications Comm.
2025 M St., N.W., Rm. 5202
Washington, DC 20554

TREASURER:
JAMES M. SEARS
General Electric
Mountain View Road
Lynbrook, VA 24502
(804) 385-7800

SECRETARY:
SAMUEL A. LESLIE
The Antenna Specialists Co.
99 Woodberry Lane
Lynchburg, VA 24502-4453
(804) 522-7589 Home

BOARD OF GOVERNORS

NAME(Term thru)
J. R. Crust(90)
Robert F. Fenton(91)
Arthur Goldsmith(90)
Leo M. Himmel(91)
A. Kent Johnson(89)
Samuel A. Leslie(89)
Fred M. Links(89)
Roger Madden(90)
Robert A. Mazolato(91)
George F. McClure(91)
Samuel McConnoughy(89)
Stuart Meyer(91)
Evans B. Richards(90)
Jesse E. Russell(91)
Raymond C. Trott(90)

RESPONSIBILITY
Newsletter (Communications)
Sr. Past President/Planning
Const. & Bylaws Chair
Chairman, Education Committee
Newsletter Editor
Society Treasurer
National Site Selection
Past President
Vehicular Electronics Liaison
President
Avant Garde/Public Relations
Jr. Past President/Nominations
National Conference Chairman
Standards Chairman
Membership Chairman

OTHER EVENTS OF INTEREST

Event: Second Rutgers Workshop on Third Generation Wireless Information Networks
Date: October 18-19 1990
Location: Ramada Renaissance
East Brunswick, New Jersey, USA

Contact: Sandeep Nanda
WIN Workshop
Department of Electrical and Computer Engineering
Box 909, Piscataway, NJ 08855-0969, USA
Phone: (201) 932-5954
Fax: (201) 932-3903

Event: Operation, Maintenance and Economics of Freight Train Air Brake Systems-Into The 21st Century
Date: May 23-24, 1990
Location: University of Illinois at Urbana-Champaign
Beckman Institute for Advanced Science and Technology
Contact: University of Illinois at Urbana-Champaign
Accounting Business Office
Room 182, Administration Building
306 South Wright Street
Urbana, Illinois 61801
Telephone: (217) 244-7659
Fax: (217) 333-9561

Event: Second International Mobile Satellite Conference
Date: June 17-20, 1990
Location: Ottawa Congress Centre-Ottawa, Canada
Contact: Patti Mordaszewicz
174 Hickory Street
Ottawa, ON
Canada, K1Y 3T6
Telephone: (613) 724-9900
Fax: (613) 724-4851

Chapter News

Gaspar Messina
Chapter News Editor

Meetings
Cleveland Vehicular Technology Society
Subject: Tour of MCI's North Royalton, Ohio
Computer and Telecommunication Switching Center
By: Mr. Mike Vento, MCI
12300 Ridge Road
North Royalton, Ohio 44133
Held: February 7, 1990
Attendance: 22 (10 guests)

Subject: A New Generation of High Power Cellular
Bootsrap
By: Mr. Ronald Jakubowski, Antenna Specialists
30500 Bruce Industrial Parkway
Cleveland, Ohio 44139-3996
Held: March 6, 1990
Attendance: 20 (7 guests)

San Francisco Bay Area VTS
Subject: Radio Access Technology, CDMA/Spread Spectrum
By: Dr. W. C. Y. Lee, Pactel Cellular
Van Carman, Irvine, California
Held: March 1, 1990
Attendance: 120 (36 guests)

Philadelphia (Joint VTS/Land Transportation Division)
Subject: SEPTA's Fraser Maintenance Facility
By: Mr. David L. Borger, P.E., STV/SSVR
225 Park Avenue, South
New York, New York 10003
Held: January 11, 1990
Attendance: 22 (10 guests)

Gaspar Messina, Ph.D., E.E.
Editor and Chapter Activities Chairman
9800 Marquette Drive
Bethesda, Maryland 20817
High-speed rail has captured the imagination of rail enthusiasts, especially in Europe and Asia, particularly in Japan. Some wonder why the United States, which has always been thought of as a highly technologically oriented country has not been, if not in the forefront, at least has some high-speed rail in service. High-speed rail is often considered to be above 200 mph. Our closest thing is Amtrak's Northeast Corridor operations.

But now there is renewed interest in high-speed rail in the US, especially in Florida. According to PROGRESSIVE RAILROADING, in its January 1990 issue, Paul Reistrop, chairman, High Speed Rail Association, said: "On December 2, the California Nevada Super Speed Ground Transportation Commission voted to proceed with the Las Vegas-Southern California route by issuing requests for proposals for planning and construction.

Two days later, Florida Governor Bob Martinez accepted a check for $600,651 from the Florida High Speed Rail Corp., which gives that firm the right to proceed with its application to build the Miami-Orlando-Seattle rail system.

And on December 15, the Ohio High Speed Rail Authority closed its final chapter in the bidding process for the right to build the Cleveland-Columbus-Cincinnati system.

Also in the Southeast, Texas is a state with a state link to Austin/Fort Worth-Dallas, Houston and San Antonio. Pennsylvania is looking at Philadelphia and Pittsburgh as a high-speed rail. Other talks about corridors are Chicago and Milwaukee, Chicago-St. Louis and Chicago-Madison. Also, the Milwaukee end of the Chicago link might be extended to Minneapolis.

One thing to point out is that all the systems built overseas, such as Japan's, are all financed by the government. In this country, that is not the federal policy. In Secretary of Transportation Samuel Skinner's report, just released, called MOVING AMERICA: New Directions, New Opportunities, there is a section on A New Generation of Transportation for High-Density Intercity Travel. In this report, the distances are in the 100 to 500 mile range. "The journey may be too long to drive comfortably in a car but not great enough to be accommodated efficiently in today's large commercial aircraft and congested airports."

"High-speed rail and magnetically levitated trains are already operating in Europe and Japan. ... The Federal Government will promote research to support those next steps providing seed money for the initial investigations of the feasibility of major technological proposals and evaluating their cost-effectiveness in comparison with other options."

"While private investment will be the central feature in putting any of these systems into operation, the Federal Government can serve as the catalyst and ensure that all regulatory and institutional barriers do not impede implementation of viable systems."

What is operating around the world is summarized below. Thanks are extended to American Railway Engineering Association Committee 131, for its report from which this information is taken.

Existing High Speed Rail Systems

Japan: Tokaido South, Tokyo to Shin Osaka, 320 miles, 157 mph; Sanyo South, Shin Osaka to Hakata, 344 miles, $600, Fukuoka, Omiya to Morioka, 289 miles, 149 mph; Sanyo, Omiya to Nikagata, 167 miles, 149 mph.

France: TGV Southeast, Paris to Lyon, 264 miles, 186 mph; TGV Atlantique, Paris to Le Mans, 125 miles, 186 mph.

Italy: Direttissima, Rome to Florence, 157 miles, 155 mph.

United States: Northeast Corridor, Boston to New York, 227 miles, 125 mph.

Note: Several countries operate trains at 125 mph on upgraded conventional lines, plus in Germany, France, Italy, and others.

High Speed Rail Systems Under Construction

Germany: Hannover to Wurzburg, 201 miles, 155 mph; Mannheim to Stuttgart, 62 miles, 155 mph.

France: TGV Atlantique, Paris to Tours, 65 miles, plus 77 miles now in service.

TGV North, Paris to Lille, Belgium, Channel Tunnel, 207 miles, 200 mph.

Interconnection of TGV lines, Paris, by pass with stop at Eurodisney and Roissy-Charles International Airport, 65 miles, 186 mph.

Extension of TGV Southeast, Lyon to Valence, 25 miles, 186 mph.

Spain: Madrid to Seville, 292 miles, 171 mph.

High Speed Rail Systems Planned

France: TGV East, Paris to Strasbourg, 261 miles, 186 mph.

TGV Mediterranean, extension to Spain and French Riviera, 186 mph.

Australia: Melbourne to Sydney, 539 miles, 220 mph.

Brazil: Sao Paulo to Rio de Janeiro, 280 miles, 186 mph.

Canada: Quebec, Montreal, Ottawa.

Toronto, Windsor, Niagara Falls.

Korea: Seoul to Pusan, 235 miles, 186 mph.

Taiwan: Taipel to Kaohsiung, 210 miles, 171 mph.

Leningrad to Moscow to Crime, 1,300 miles, 150-186 mph.

United States: California-Nevada, Anaheim to Las Vegas, 270 miles, 185-250 mph.

Orlando, Tampa, 314 miles, 150-186 mph.

Florida-Orlando to Epcot Center, Magic Kingdom, 17.5 miles, 300 mph.

Texas: Fort Worth to Dallas to Houston to San Antonio to Austin, 618 miles, 185 mph.

Thus, one can see much planning in the US while in France, Japan with Italy and some others, high-speed rail is alive and well. The big difference is that overseas it is government policy to move people and goods, in contrast to public transportation. A factor there is with gasoline hovering in the $0.50 or $0.75 a gallon range, there is an incentive to use the rail system.

On a positive note, one can say that in the United States there is renewed interest in high-speed rail, and with funding provided in the Florida case by...
Communications

J. R. Cruz
Communications Editor

ABSTRACTS

Wide-band multipath measurements at 1300 MHz have been made in five factory buildings in Indiana. Root mean square (rms) delay spread (cr) values were found to range between 50 and 300 ns. Median cr values were 96 ns for line-of-sight (LOS) paths along walkways and 105 ns for obstructed paths across aisles. Worst case of 300 ns was measured in a modern open plan metal-working factory. Delay spreads demonstrated a transmitter-receiver (T-R) separation or fabrication topology, but were affected by factory inventory, building construction material, and wall location. Radio path loss measurements were consistent with continuous wave (CW) measurements made at identical locations. It is shown here that such empirical data suggest independent and identical uniform distributions on the phases of receivable multipath signal components. Average factory path loss was found to be a function of distance to 2.2 power. Wide-band factory propagation measurements have not been previously reported in the literature.

The paper proposes the use of an adaptive window flow control technique to control data access, with the aim of improving voice performance in an integrated voice/data multiplexer. By means of both mathematical analysis and computer simulation, the proposed control technique is shown to yield improvements in the average packet delay of both voice and data at the expense of data throughput. Additionally, the proposed technique can be made to perform better than the two frame management strategies which have been demonstrated by previous work to be efficient for the integrated voice/data multiplexer.

Coding schemes for binary raster document transmission in the mobile radio environment are explored. For many applications, standard facsimile is too costly in terms of capital investment and transmission time. In this paper we present joint source-channel coding as an alternative, cost-effective solution for low resolution graphics transmission. We present BSE-RL coding as a novel and useful example of joint source-channel coding.

Threshold detection techniques are employed to obtain canonical multiple-bit-observation receivers for detection of weak coherent and incoherent continuous phase-modulated signals buried in non-Gaussian noise. The limiting performance estimates of the receivers are derived, and then used to determine optimal coherent and incoherent threshold signaling schemes that belong to a subclass of CPM signals and find applications over certain bandlimited channels.

A new method is proposed for predicting the degradation in performance of FSK data communication systems subjected to impulsive noise. It involves overlaying a representation of the incoming noise, expressed in terms of the noise amplitude distribution (NAD), on a family of degradation curves drawn with BER as the parameter. A direct prediction of the BER to be expected in the presence of the noise can be obtained by looking off the value of the NAD curve corresponding to the tangency of the two sets of curves (termed the tangential BER), and multiplying this by a factor F, characteristic of the radio location. The value of F can be found either experimentally or analytically. The usefulness of the method has been demonstrated, using vehicle-borne equipment, by a series of experiments designed to be representative of typical mobile radio reception conditions. The proposed method is a very powerful experimental assessment technique. It is simple in concept, easy to apply and has the advantage of being readily generalized for applications with different modulation types.

This paper presents an analytical investigation of generalized retransmission backoff policies for slotted ALOHA random access channels. Backoff techniques, of which the well-known "exponential" is a special case, are based on adaptation of average retransmission delay as a function of the number of collisions experienced by a message across the contention channel. An analytical expression for the average delay is derived and used to assess the performance advantage offered by either exponential backoff or alternative policies motivated by heuristic considerations. Numerical results for an example satellite channel scenario are presented, demonstrating that the use of appropriate backoff policies can result in significant improvements in stable throughput-delay characteristics relative to nonadaptive systems.

The performance of noncoherent reception in fast frequency hopping spread-spectrum (FFH-SS) systems operating through noisy, fading multipath channels in investigated. Systems operating with binary frequency-shift keying modulation (BFSK) and noncoherent demodulation are studied. The error probability as a function of various system parameters for M = 2, 4, and 8 symbols and the third order Butterworth receiver filter is derived. The error probability increases with Doppler frequency and with the shift of the channel from Gaussian through Rician to Rayleigh. The optimum multipath bandwidth per bit in the vicinity of one and the optimum modulation index for binary symbols is about 0.6. The threshold for quadrature symbols is optimal to about 0.9 of the modulation index. For Rician and Rayleigh channels with non zero Doppler frequency there is an error floor, below which no systematic error coding in order to achieve a desired error probability.

A new algorithm for detecting and/or decoding of signals in communication systems is presented. The advantage of the proposed sub-optimum with respect to the classical maximum likelihood detection (MLSE) method lies in the significant reduction in computation complexity attainable by associating reliable information to each received signal. At the same time, the error probability is maintained as close as possible to the MLSE level. The new project adds to the reliability information. We describe the application of the proposed algorithm to some interesting cases, such as the MLSE level probability of error and without combined channel coding, detection of Ungerboeck codes, use in conjunction with the Viterbi algorithm. In particular, we propose a new and quite complex procedure with respect to the classical MLSE algorithm is achieved.
Vehicular Electronics

Bill Fleming
Vehicular Electronics Editor

Auto Directional Antenna -- Blaupunkt has developed a concealed radio antenna system that uses "phased array" technology to electronically steer the antenna in the direction of best reception [1]. This antenna is especially useful in minimizing effects of multipath interference which are pronounced in localized areas near broadcast transmitters. An OEM version of this system is expected to debut in the 1993 model year.

The antenna system differs from traditional diversity antennas that simply focus on the strongest incoming signal. The new Blaupunkt antenna adjusts the phases of signals received by four bumper-mounted antennas such that the phased array antenna is electronically aimed in the direction of best signal reception. At the same time, unwanted multipath signals coming from other directions are rejected.

(This should sell well to anyone who drives around Southfield, MI, where at least 3 or 4 high-power transmitters create severe multipath interference problems. I usually switch to am-radio when I'm driving in this part of the greater Detroit area).

The antennas used in this system are made of foil and can either be bumper mounted or embedded in any quarter section the vehicle which is plastic. The microprocessor that electronically controls the phased array antenna is proprietary and was developed by Robert Bosch [1].

Integrated Cellular Phone/Windshield Visor -- Buyers of five high-end Chrysler vehicles will be able to order cellular phones that are integrated into the windshield visor [2]. The phones were developed jointly by Chrysler and Oki Telecom.

To place a call, the driver flips down the visor, presses a button to turn the phone on, and then enters the number. The telephone automatically mutes the radio when making or receiving a call. It also has capacity for up to 100 programmed telephone numbers for faster dialing.

Electronic Muffler -- Noise Cancellation Technologies, Inc., and Walker Manufacturing (Tenneco Automotive) have formed a joint venture to develop an electronic muffler [3]. Equal but opposite-phase sound waves are electronically generated to cancel sound waves in the exhaust that are generated by the engine. Not only is noise muffled, but so is engine exhaust backpressure. It is claimed that this results in a 5-percent improvement in both fuel economy and horsepower, as well as a 25-percent savings in muffler weight.

"Intelligent Tires" -- I think we're all becoming wary of hearing about "smart" and/or "intelligent" this or that. Well how about "intelligent" tires? Two professors from the Milan, Italy, Politecnico Institute claim to have such a thing [4].

"Intelligent" tires change shape to suit different road conditions. Instead of filling the tires with air, the tires are filled with a "composite substance called Compound X." Pellet belts inside the tire rapidly change its temperature, whereupon Compound X expands by heretofore unheard of amounts. Compound X-filled tires would be especially useful for off-road agricultural or military vehicles. Compound X may also be used in safety applications such as in crash helmets to provide occupant-conformal energy-absorbing padding and bolstering.

How there's a hitch. The Italian professors won't disclose the makeup of Compound X. However, they said that it is not a metal, a polymer, or a traditional compound. (Big help they are). Make up your own mind, but they sure don't have many answers for the questions that were asked. Most information is warrant- ed, particularly with respect to the dramatic claims they're making. Personally, I've already met too many people like them.

Nissan Keystless Entry System -- Nissan has developed a keyless entry system which is activated by the fingerprints of people who regularly use the car [5]. The system permits entry to the vehicle by reading pre-programmed fingerprints. After keying in a 3-digit entry code on door-mounted push-buttons, the driver places his or her finger on a sensor prism.

The system can match authorized fingerprint patterns within 2.5 s, or reject unauthorized fingerprints within 5 s, and will register new authorized fingerprints within 45 s.

Lexus Wireless Door Locking System -- A low-power 41-MHz radio signal, transmitted from the grip of the ignition key is received by the vehicle rear window defogger wire grid actuating an antenna. If the transmitted frequency-modulated code matches the stored code, a motor-drive circuit either locks or unlocks the vehicle doors [6]. The remote control door locking system is only operable within three feet of the rear window antenna.

What Does the Customer Want -- According to a survey of visitors at the 1990 Greater Los Angeles Auto Show, the consumer is surprisingly uninterested in high-tech aids to driving [7]. In one part of the survey, customers were asked to choose between: a range guidance system, a traffic communications warning system, a collision avoidance system, and a robotic driving (auto pilot) system.
IEEE Vehicular Technology Society Newsletter

May 1990

None of the systems received even a 50-per-cent endorsement. For hypothesitically identical prices of $1,000 each, 50% of the surveyed said they would buy collision avoidance, 34% would buy robotic driving, 33% for traffic warning, and only 24% for route guidance.

In another survey, customers were asked to choose between a regularly priced $1,000 options of a) upgrad ed stereo, fancy wheels and trim, cellular phone, or a more powerful engine. Of those surveyed, 50% would opt for the engine, 25% for the better stereo, and less than 10% would choose the fancy wheels or cellular phone. As pointed out by Michael Sheildrick (8): “a substantial majority of would-be car buyers in the L.A. Auto Show surveyed said they wouldn’t pay $1,000 for many features that automotive engineers are even now readying for late ’90s production.” Nonetheless, “more than 40 percent would be willing to pay $1,000 for a collision avoidance system. That’s pretty high considering a goodly number had to be buyers of low-cost cars. It confirms the high interest in safety.”

REFERENCES

IEEE-USA Supports Federal Technology Transfer Conference

IEEE-USA’s U.S. Competitiveness Committee Chairman Edward J. Doyle recently expressed IEEE-USA’s interest in participating in a Technology Transfer Conference to be held in June in Santa Fe, New Mexico. Doyle said that IEEE-USA is willing to support the conference as a co-sponsor and would like to assist in developing the program, as well as send representatives to attend the conference. Dr. James Govers, a former IEEE-USA Congressional Fellow who is a member of the U.S. Competitiveness Committee, will represent IEEE-USA at the conference along with Mr. Doyle. Among the conference objectives summarized at a recent Steering Committee meeting are:
- Promoting cooperation among industry, Federal laboratories, agencies, educational institutions, state and local governments and non-profit organizations to increase the utilization of federally developed technology;
- Seeking industry feedback on technology transfer laws and regulatory policies;
- Informing interested firms about the National Competitiveness Technology Transfer Act of 1989 and existing opportunities and methodologies;
- Stimulating industry guidance to the Department of Energy on the new regulations affecting technology transfer; and
- Promoting the mission of technology transfer and preparing for future efforts to change industry attitudes about external research, developments, and technology.

New Video Tape Available on Talking With Children About Technical Careers

The PACE Regional Activities Committee has announced the availability of a new videocassette, How to Talk to Children About Technical Careers. The tape features IEEE member Francine Wright, an IBM engineer, explaining techniques for getting and holding children’s attention. She tells how to prepare a presentation for youngsters, including how to use visual aids effectively, and how to follow up on the talk afterward.

How to Talk to Children about Technical Careers was produced by IEEE member Curtis Massie of the Fort Huachuca (Arizona) section. Ms. Wright’s presentation provides a useful tool for those who have established and maintain contact with their local schools, teachers and students. The tape may be obtained on loan from your regional PACE Coordinator, or from the IEEE-USA Office in Washington, D.C. Sections or individuals wishing to purchase a copy of the tape should contact Ann Hartfield at the IEEE-USA Washington Office.

IEEE-USA Urges Appointment of Biomedical Engineer

Michael J. Whithal, 1990 IEEE Vice President of Professional Activities, wrote a letter recently on behalf of IEEE-USA’s Health Care Engineering Policy Committee (HECPC) to Senator Edward Kennedy, Chairman of the Senate Labor and Human Resources Committee, regarding S.1391, the Foundation for Biomedical Research Act of 1989. One purpose of the bill is to amend the Public Health Service Act to establish a Foundation for Biomedical Research.

In his letter, Whithal recommended that a minimum of one appointed member of the Biomedical Research Board of Directors be reserved for a biomedical engineer. He pointed out that biomedical research involves “the development and application of complex technology,” which requires both an understanding of biomedical processes and the engineering of the underlying equipment used to measure and manipulate those processes. Whithal said that appointing a biomedical engineer to the Board of Directors would provide the Foundation with a technologically oriented resource.

Three IEEE-USA Committees Endorse Trade and Technology Promotion Act of 1989

IEEE-USA’s Committee on U.S. Competitiveness met in Washington on January 26 to discuss competitiveness issues and problems and the Committee’s 1990 objectives. The Committee recommended that IEEE-USA support new legislation introduced by Senator John Glenn (D-Ohio). His bill, S.78, reorganizes the Department of Commerce into a Department of Industry and Technology. In a February 7 meeting, Harry Broadman, Chief Economist of the Senate Governmental Affairs Committee, explained to an IEEE-USA delegation how Glenn’s bill differs from prior legislation. He also offered suggestions for revising the legislation.

IEEE-USA’s National Government Activities Committee (NGAC) convened in Washington on February 8, also proposing to support the new bill. 1990 NGAC Chairman Edward Bertinelli pointed out that the new legislation would not only establish a new executive department of the government, but also add an Advanced Civilian Technology Agency within the department.

Additionally, IEEE-USA’s Engineering R&D Policy Committee has also expressed its support for S.78. Michael Whithal, 1990 USAB Chairman and Vice President of Professional Activities, recently sent a letter to John Glenn, Chairman of the Senate Committee on Governmental Affairs, requesting an opportunity to give testimony on the bill.

IEEE-USA Hot Lines is designed to provide IEEE Sections and Societies with up-to-date information on United States Activities. IEEE publication editors who receive IEEE-USA Hot Lines can use entirely or excerpt from the contents. We invite your comments on format, content, and lead time. Vol. 7, No. 4 April 1990
Discover the advantages of belonging to the world's largest professional engineering society—The Institute of Electrical and Electronics Engineers, Inc.

Join the engineering future of tomorrow...the more than 50,000 IEEE student members now in engineering colleges and technical schools, worldwide.

We can put you in touch with the future at an IEEE student branch near you.
CALL FOR PAPERS
IEEE VEHICULAR TECHNOLOGY SOCIETY
41ST ANNUAL CONFERENCE
ST. LOUIS, MISSOURI
May 19 - 22, 1991

YOU ARE INVITED TO SUBMIT A PAPER FOR PRESENTATION AT THE 1991 IEEE VTS CONFERENCE. TOPICS INCLUDE, BUT ARE NOT LIMITED TO, THE FOLLOWING TECHNICAL AREAS:

MOBILE COMMUNICATIONS
MOBILE PROPAGATION
SIGNALLING PROTOCOLS
PORTABLE SYSTEMS
COMMAND AND CONTROL
MODULATION TECHNIQUES
DISPATCH SYSTEMS
EMERGENCY COMMUNICATIONS
TWO-WAY RADIO
MOBILE SATELLITE SYSTEM
PUBLIC SAFETY
UTILITY COMMUNICATIONS
RFI REDUCTION
RFI INGRESS SOLUTIONS
ANTENNA TECHNOLOGY
ANALOG AND DIGITAL CELLULAR
PERSONAL COMMUNICATIONS
SIMULCasting
NARROWBAND SYSTEMS
RURAL RADIO SERVICE
POINT-TO-POINT SYSTEMS
INNOVATIVE SYSTEMS APPLICATIONS
NETWORK DESIGN
RF COMPONENTS
VOICE SYNTHESIS & COMPRESSION
REGULATORY ISSUES
SPECIALIZED MOBILE RADIO SYSTEMS
ANTENNA SITE MANAGEMENT

VEHICLE ELECTRONICS
VEHICLE CONTROL
COLLISION AVOIDANCE
ENTERTAINMENT ELECTRONICS
VEHICLE NAVIGATION
PROPULSION
BRAKING SYSTEMS
POLUTION SENSING AND CONTROL
VEHICLE - DRIVER COMMUNICATIONS
INFORMATION DISPLAYS
MULTIPLEXED SIGNALING
EMI / RFI MITIGATION
MICROPROCESSOR APPLICATIONS
VEHICLE TESTING DATA COMMUNICATION

TRANSPORTATION SYSTEMS
CONTROL SYSTEMS
TRAIN CREW COMMUNICATIONS
PUBLIC COMMUNICATIONS
TRAFFIC CONTROL
MAGLEV
ELECTROMAGNETIC COMPATIBILITY
ROBOTICS APPLICATIONS
HEADWAY MANAGEMENT

THE IEEE/ASME RAILROAD CONFERENCE WILL BE HELD JOINTLY WITH THIS CONFERENCE. SEPARATE SOLICITATIONS FOR PAPERS WILL BE ISSUED.

AN ABSTRACT OF APPROXIMATELY 250 WORDS SHOULD BE SENT TO:
IEEE VTS '91 CONFERENCE TECHNICAL PROGRAM COMMITTEE
DR. EDWARD CHIEN
C/O SBC TECHNOLOGY RESOURCES
550 MARYVILLE CENTRE DRIVE, SUITE 312
ST. LOUIS, MO 63141
314-529-7560

SCHEDULE FOR PAPERS

ABSTRACT SUBMITTED BY .. AUG. 1, 1990
AUTHORS NOTIFIED OF ACCEPTANCE OF PAPERS NOV. 30, 1990
FINAL MANUSCRIPTS TO CONFERENCE COMMITTEE NO LATER THAN JAN. 15, 1991

THE AUTHORS OF ALL PAPERS AGREE TO PRESENT THEIR PAPERS AT THE 1991 CONFERENCE.

FOR OTHER INFORMATION, PLEASE CONTACT: JAY UNDERDOWN, CONFERENCE CHAIRMAN, 314-946-9980