President's Report

It is with a great deal of excitement and some trepidation that I take the helm of the Reliability Society. Excitement, because the Society is a dynamic organization, actively contributing to advancements in our profession. Trepidation, because the shoes I shall attempt to fill are several sizes too large. Under the able leadership of Thad Regulinski, the Society has gained stature and maturity.

Speaking for the Society in total and for myself personally, I wish to thank Thad for his tireless efforts in our behalf, his infinite contributions to the Society and the profession, and his motivational influence on all who had the privilege of working with him. We look forward to his continued active support of our Society.

In this "State of the Society" message, I am happy to report that we are extremely healthy. Under the previous administration, the Society has expanded the scope and accomplishments of its technical committees, sponsored highly successful technical conferences, grown in membership, established a new Chapter, and published superb transactions and newsletters. In short, all departments are functioning with efficiency and competence. It is my objective to continue this momentum with even further gains in the coming months. We must continue to grow in membership if we are to reach a high percentage of the practitioners of the reliability discipline, and there are still several areas with sufficient members to organize and support a local chapter. We must strive to participate actively through our technical committees in any area where our discipline can contribute. This means the establishment and staffing of new committees, as appropriate. The Society must actively pursue adequate coverage of our discipline in technical papers and expanded sponsorship of appropriate conferences. We must continue to diligently strive for more papers on practical application of our technology in our conferences and in our transactions. I will attempt to furnish more detail on our objectives and accomplishments in subsequent newsletters.

The key to our current health has been the increased active participation by members of the Reliability Society. Your ADCOM can provide the adhesive to unite our operations, but the membership has provided the talent on our technical committees, the management of and attendance at our conferences, and the material for our publications. I thank the membership for this support and urge those of you who are not involved to become involved. Let your officers know of committees in which you are interested, topics you feel should be covered in conferences, conference management interests, or material you could provide for publications.

I thank the Society for the honor of serving as your president. I shall strive to conduct the affairs of the Society in a manner which serves the interests and desires of our membership.

Carl M. Bird
President
The Editor's Corner

This is my first product as editor of the Newsletter. It's a fun job. Unfortunately, I currently have several fun jobs and my boss is getting suspicious of my priorities. So you will find in the help wanted section that I will relinquish the mantle to a worthy volunteer, if one can be found.

Until then, however, I will do my best to see that you get your newsletter on time and as crammed full of interesting items as I can manage. I invite you to take advantage of the neverending need for news to make the newsletter your forum for anything you think the R&M community should see. Want to announce a meeting, compliment or chew-out the Reliability Society ADCOM, offer suggestions, pass along an observation or share a joke? Letters, notes, reproducible cartoons and photos all welcomed. Also any advice on what you would like to see in the Newsletter. Please note that our deadline for inputs is two months before publication so if you want to put something in a particular issue, allow for the lead time. Scheduled publication dates are the first of April, July, October, and January. Mail inputs to me, RADC/RBET, Griffiss AF NY 13441. Want to talk about it? Call me at (315)330-4726.

I consider this job a privilege and a pleasure, but also a significant responsibility. Whether my tenure as editor is short or long, my goal will always be to provide the maximum benefit to you. Your feedback will help keep me on track. Now you've heard from me; please let me hear from you.

Anthony Coppola

Contents

President's Report .. 1
The Editor's Corner ... 2
Chapter News ... 3
Announcements ... 3
AdCom Vice President Reports 4
AdCom Committee Reports 4
Reliability Society Chapters Chairman 10
Reliability Society Officers 10
Reliability Program Standard Revised 17
Welcome to New Members 11
Status of Reliability Technology 1980 13
Announcements ... 18
Call for Papers .. 19
Membership Application 20

Reliability Society Newsletter is published quarterly by the Reliability Society of the Institute of Electrical and Electronics Engineers, Inc. Headquarters: 345 East 47th Street, New York, NY 10017. Sent automatically and without additional cost to each member of the Reliability Society. Printed in U.S.A. Second-class postage paid at New York, NY and at additional mailing offices.

Chapter News

Los Angeles Chapter

Los Angeles Chapter Reliability held a joint meeting with G-21 Components, Hybrids & Manufacturing Technology on Reliable High Speed Digital Packaging. Juliana Vidalch of TRW's Electronic Systems Division described developments in packaging techniques to facilitate high speed digital processing, on Tuesday, October 14, 1980 at the Hacienda Hotel, 555 N. Sepulveda Blvd. in El Segundo.

Packaging digital logic circuitry for performance from 250MHz into the gigahertz range requires that special techniques be used in the areas of chip packages, circuit boards, connectors and thermal management. Minimization of impedance mismatch is essential to maintain signal quality. Controlled impedance transmission lines are necessary, and interconnecting elements such as wire bonds, chip carrier conductors, plated through holes, and printed circuit board connectors must be designed to create minimum disturbance to signal waveforms. This paper described developments of coplanar transmission lines, multilayer printed circuit board hybrids, ceramic chip carriers, one-piece circuit board connectors, and direct attachment of chip packages to circuit board heatsinks. Test data from developmental hardware reflecting high reliability of this design approach was included. Juliana Vidalch is a mechanical engineering graduate of Cal State, Northridge. She designed electronic packaging for navigation and control systems at Teledyne Systems, and for the past two years has worked at TRW Defense Space Systems Group performing electronic packaging of digital systems. A substantial portion of this period has been devoted to the development of high speed digital packaging techniques. She is a member of the IEEE Computer Packaging Committee, the IEEE Components, Hybrids and Manufacturing Technology chapter and a member of the Society of Women Engineers.

San Diego, California

You do not presently have an area Reliability Society Chapter even though you have a very significant number of members in the San Diego area. If any of you wish to join or form a chapter such as the Denver area did in 1980, please contact Hank Malec, Chapters Activities Chairman at the FTT/Advanced Technology Center, 1 Research Drive, Shelton, CT 06484 or call (203) 929-7341 Ext. 817.

Wanted in Texas

Reliability Group members to join or form area chapters in the Dallas and Houston areas. You do not presently have an area Reliability Society Chapter even though you have highly regarded reliability specialists in the area. If you would like to help form a chapter, please contact Ray Wilson in Dallas (214) 247-9052.

Announcements

Third Annual Electrical Overstress/Electrostatic Discharge Symposium September 22-24 1981—Aladdin Hotel—Las Vegas

The symposium will be devoted to the understanding of fundamental phenomena and their application to design and production problems associated with transient electrical overstress in military, industrial, communications, consumer, and automotive electronics, especially intended for the dissemination of results related to ESD/EOS problems in the design, fabrication, testing, handling and assembly of microelectronic circuits.

For registration and general conference information contact:

Jim Beall, Martin Marietta P.O. Box 197/M/S 0540 Denver, CO 80201 (303) 977-5508 (303) 977-3838

Ernest D. Calbert Teledyne Ryan Aeronautical D/194 2701 Harbor Drive San Diego, CA 92138 (714) 291-7311 X 1126

Reliability Analysis Center RADC/RBRAE Griffiss AF NY 13441 (315) 330-4151

1980 Proceedings are now available. Copies may be obtained through the Reliability Analysis Center, RADC/RBRAE, Griffiss AFB NY 13441. Request EOS-2. The price is $24.00 per copy.

Components Reliability Screening Seminar

A Saturday Seminar on Electronic Components Reliability Screening is scheduled to take place at the TRW Forum in Redondo Beach, California on April 25, 1981. It is sponsored jointly by the IEEE ST Reliability and S21 Components, Hybrids and Manufacturing Technics Society Chapters of the IEEE Los Angeles Council.

This seminar will feature results of burn-in and screening tests data collected by the Parts Screening Committee on over 30 million parts (mostly IC's) and also will include comparison of module burn-in and screening tests. Emphasis will be on comparative payoffs with different screening methods to aid in management decision on appropriate screening for each project. Included in the seminar presentations will be results of testing 12 competitive commercial 16K Dynamic RAM products periodically over 2400 hours of dynamic burn-in 125°C. Changes in performance parameters were evaluated and compared for devices that eventually failed versus those that did
not fail. Results of Parameter Drift Analyses for Minuteman Semiconductors will also be presented for competitive high reliability MIL-SPEC devices. Device manufacturing data from long and short term burn-in and screening will be presented to reflect effectiveness of techniques, as well as expected test results. In addition to the data, information on newly developed evaluation techniques will be presented, along with preliminary results. Comparisons of device screening techniques that did not involve burn-in, such as voltage acceleration, and also comparison of burn-in versus hot rail screening results will be presented. Also, comparisons of module screening results will be presented from experience with various screening approaches.

Cost of the seminar is $40 to non-IEEE members, including lunch and seminar book of presentation abstracts. $10 credit from that fee toward joining the IEEE and the Reliability Components Society may be designated by attendees.

Members of the IEEE, who are not Reliability or Components Society members are required to pay only $35 and will be allowed to credit $5.00 toward either of these societies if they wish to join at the time of the seminar. IEEE and Reliability or Components Society members are required to pay only $30.

Space is limited at TRW to 250 attendees on an advance registration basis only. Those wishing to attend are encouraged to register early. You may register by sending your check to I. Doshay, TRW 88/1047, One Space Park, Redondo Beach, CA 90278. Checks should be made out to IEEE CRS Seminar. Please include your IEEE membership number or indicate your desire to join IEEE. The form below is provided for your convenience.

<table>
<thead>
<tr>
<th>Components Reliability Screening Seminar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturday April 25, 1981</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>Company</td>
</tr>
<tr>
<td>Address</td>
</tr>
<tr>
<td>Registration including abstracts</td>
</tr>
<tr>
<td>Non-Member $40—$5 toward joining IEEE</td>
</tr>
<tr>
<td>Society $5 toward</td>
</tr>
<tr>
<td>IEEE Member $35—$5 toward joining</td>
</tr>
<tr>
<td>Society</td>
</tr>
<tr>
<td>IEEE and Society Member $30</td>
</tr>
<tr>
<td>Make checks payable to IEEE CRS Seminar</td>
</tr>
</tbody>
</table>

AdCom Vice-President Reports

26 January 1981

The goals of Technical Operations have been met.

- All committees are active and have tried to satisfy their intended objectives. The major problem is lack of support personnel.
- All committee charters have been completed and are available from the new Vice President.
- Committee chairmen have all reported to me on their activities, but have not always been able to attend AdCom meetings.
- A new committee was established this year—the Parts Screening Committee. Definition of activities and the charter need to be developed by the incoming chairman.

- Articles have regularly been submitted to the Newsletter, from which some responses have been obtained! Respectively Submitted:
 - Alan O. Platt
 - Vice President
 - Technical Operations
 - 1980

Publications

The January issue of the Newsletter was issued and in members hands by January 3, 1981. The cutoff date for information for the April Newsletter is January 26. Information should be sent to Tony Coppola by that date. Proper transfer of files to the incoming VP Publications has been effected.

IEEE Transactions on Reliability

The status of the Transactions is covered in Dr. Evans report (copy attached).

I want to thank all of those individuals who have worked so diligently to make this activity successful. Ralph Evans, Jim Victor, Dick Kowalski and John Rooney.

January 23, 1983

Naomi McAfee

IEEE Transactions on Reliability

1. The Transactions are on schedule and on budget.
2. Our Special Papers Board continues to solicit practical papers, but with little result. All AdCom members ought to assist in this difficult task. The "From the Editors" columns have generated some response. That notice will be continued.
3. We continue to work with the composer to find ways to cut costs without degrading appearance. We have not yet been informed by IEEE-HQ what the new cover will look like for 1982.
4. We are generating some "Special Sections" of the Transactions on topics which can not fill a complete Special Issue. The first such section is: "State of Reliability Effort in Indian Subcontinent" in the 1981 April issue.
5. Our page budget for this year (1981) is:

- 472 text + 20 covers + 8 index = 500 total

We plan to list all past Editors of our Transactions in a forthcoming issue, if we can find out who they were. They all deserve a great deal of credit for our present success. If you know who any of the early ones were, please let me know.

—prepared 1981 January 5

Ralph A. Evans, Ph.D., P.E.
Editor

Membership

Membership as of November 1980 was 3082, compared to 2832 a year ago—up 8.8%. Final membership goal of 3250 by January 1981 appears achievable.

Subcommittee Reports are highlighted as follows:

- 1. Membership—H. L. Waerfelt, Chairman
- Membership advertisements have appeared in Electron Devices (Oct. issue) and Circuits and Systems (Dec. issue).
- Membership brochure has been printed (20,000). Disposition of brochures—4K, D. Troxel for mailing to IEEE members interested in Reliability—2K, H. Malec for distribution to Chapters—3K, R. Evans for inclusion in R&M Symposium Proceedings, and 11K, Membership Chairman.
- A small sign soliciting society membership applicants has been constructed for use on a display table at the R&M Symposium calling attention to the brochure.
- 2. Chapter Activities—H. Malec, Chairman
- Currently there are 19 Chapters active. There appears to be interest in forming a new chapter in the Dallas-Houston area.

Also an inquiry concerning chapter activity has been received from Taiwan.

Action was completed on the 1979-80 Chapter Awards. A supply of membership brochures were sent to each of the Chapters.

3. Professional Development—O. D. Trapp, Chairman

Limited progress made toward developing home study course on reliability. Material developed by V. Lalli still under consideration. In a communication from Dr. Shooman, he mentioned new material developed by his activity that might be considered for this purpose.

4. Membership Analysis—D. Troxel, Chairman

Action is underway to send a copy of the Reliability Society Membership Brochure to IEEE members who are not currently members of the Society, who have indicated an interest in reliability.

Meetings

January 26, 1981

B. Betterer

The two major conferences sponsored by the Society during 1980 were highly successful and continued the Society's tradition of providing excellent opportunity for technical interchange. While not completely problem free from the conference management viewpoint, the primary objectives of providing a forum for dissemination of technical advances and publishing outstanding conference Proceedings were achieved by both the Reliability and Maintainability Symposium and the Reliability Physics Symposium. Copies of Proceedings from both were distributed as bonus publications to our members.

The Product Liability Prevention Conference was, unfortunately, not as successful. The least in this Conference has been steadily declining and the Society support of the conference has been negligible. The AdCom took action to discontinue sponsorship of PLP. The future of the Conference is, as yet, unknown.

I would like to thank all members of the Reliability Society for the support extended to me during my two years tenure as Meetings Vice President and I hope I have contributed something of positive value.

Respectfully submitted,

Carl M. Bird

Vice President, Meetings

Treasurer's Report

January 15, 1981

1. 1980 Financial Status. The October 31, 1980 financial report shows a surplus of $32,800 bringing our reserves to $85,600 as of that date. This surplus will be much smaller when the final 1980 financial report is received, since over 95% of the
expected income is included and only about 70% of the expected expenses are included in the October report. The final 1980 report will be prepared in one month and will be reflected in my April, 1981 report. I have made an unofficial estimate of final 1980 income and expenses based on trends from prior year reports. My guess as to the final 1980 status is an estimated final surplus of about $600,000, which would result in expected final reserves of $58,800. This would be better than the $600 surplus which is included in the official 1980 budget. Specific details relative to our cash position per the latest official reports are as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net worth January 1, 1980</td>
<td>$52,800</td>
</tr>
<tr>
<td>Net operating surplus, 10/31/80</td>
<td>$32,800</td>
</tr>
<tr>
<td>Net worth, 10/31/80</td>
<td>$85,600</td>
</tr>
<tr>
<td>Outstanding loans</td>
<td>$4,400</td>
</tr>
<tr>
<td>Cash balance, 10/31/80</td>
<td>$81,100</td>
</tr>
<tr>
<td>1980 ARMS Surplus</td>
<td>$113,684</td>
</tr>
<tr>
<td>1979 IRPS Surplus</td>
<td>$3,560.16</td>
</tr>
<tr>
<td>1980 ARMS Surplus</td>
<td>$5,733.64</td>
</tr>
<tr>
<td>1980 ARMS Proceedings</td>
<td>$10,607.26</td>
</tr>
<tr>
<td>1980 IRPS Proceedings</td>
<td>$8,789.16</td>
</tr>
<tr>
<td>1980 PLP Proceedings</td>
<td>$500.00</td>
</tr>
<tr>
<td>1980 Congressman Fellows Fund</td>
<td>$2,500.00</td>
</tr>
<tr>
<td>Denver Meeting</td>
<td>474.69</td>
</tr>
</tbody>
</table>

2. 1981 Budget. The latest official 1981 budget shows a projected deficit of $5,100. This includes an increase in budgeted transactions costs of $14,480 based upon our planned budget of 500 pages for the coming year, a budgeted membership fee increase of $1,000 based on 2749 members, and a budgeted subscription income increase of about $5,000 instead of the $7,000 previously budgeted. If my projected 1980 estimate and the preliminary 1981 budget both prove to be correct, our reserves would be cut to $33,700.

3. Miscellaneous—The following were noteworthy income and expense items for 1980:

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Option 2 investment (40% interest)</td>
<td>$35,000</td>
</tr>
<tr>
<td>Option 1 investment (11.1% interest)</td>
<td>$20,000</td>
</tr>
<tr>
<td>Checking account</td>
<td>26,200</td>
</tr>
<tr>
<td>Loans: 1980 PLP</td>
<td>$300.00</td>
</tr>
<tr>
<td>1981 ARMS</td>
<td>1,100.00</td>
</tr>
<tr>
<td>1981 IRPS</td>
<td>3,000.00</td>
</tr>
</tbody>
</table>

Respectfully Submitted,
Irwin A. Feigenbaum
Treasurer

AdCom Committee Reports

Summary of Software Reliability Committee (SRC) Activity—1980

During 1980 the primary emphasis of SRC activity was in establishing meaningful definitions that are acceptable to both software and systems practitioners, as well as the community of reliability mathematicians. Also, establishing a firm foundation of software fault experience together with data on the impact of such faults on system reliability was an ancillary objective.

After preparation and review of the field of interest statement for the charter in July, the first meeting of the SRC was held at Minnowbrook in August. Principal results of that meeting was an agreement on preliminary definitions and on the primary difference between hardware and software. That difference is that software (logic) does not experience a change-in-state with respect to time or any related environment. A corollary is that the implementation of software logic in hardware memory and/or resultant functions may result in failure of the software (due to its erosion in memory locations). Similarly, hardware or system failures may result due to erroneous logic design or unexpected/undefined interface of the software with its environment (principally data or operator inputs).

Coordination of SRC tasks was effected with the EIA Reliability Committee G-41, with DACs, with IEEE Computer Society and will proceed in areas related thereto or have otherwise expressed interest. The second SRC meeting was held with the G-41 EIA committee on October 10. In addition to the working paper on software reliability by Dr. Regulinski, another such paper was generated by the IEC, and was graciously sent to me recently by its IEC member. It is suggested that the IEC be made aware of SRC activity and kept informed of our progress. That paper, together with a current SRC membership list, is included below.

In the area of symposia participation, Myron Lipow presented a tutorial on Software Reliability at the R&M Symposium. Mr. Lipow also chaired a panel session at the National Computer Conference where SRC members debated controverted aspects of software reliability with noted software practitioners.

J. Doshi
Chairman, SRC

Software Reliability, Availability and Maintainability (RAM) Definitions

Software Reliability - the probability that the required software will perform the intended logical operations for the prescribed mission(s) and period(s) in the specified data/environment, without failure.

Software Failure - the inability, due to a fault in the software, to perform an intended logical operation in the presence of the specified data/environment.

Software Reliability Prediction Model - mathematical model that could include appropriate parameters such as code complexity, branch structure, modular format utilization, execution rate, timing restrictions, and data complexity, predictability and variability, as may be verified by test data.

Compatible Hardware/Software Prediction Models - suitable interpretation of hardware and software mathematical relationships for combined computation so as to make feasible prediction of the System Reliability.

Software Maintainability - the probability that the software can be retained in or restored to a specified status in a prescribed period compatible with mission requirements.

Software Corrective Modification - the necessary corrections of the logic/code that will preclude repetition of a prior experienced software failure when processing a data set associated with that failure.

Software Preventive Modification - the periodic updating of the software to preclude system failure when processing potential data sets.

Software Maintainability Model - a mathematical model that may be derived in error in correcting software faults that predicts frequency of faults of various categories, and may include:

(a) Available parameters to accommodate results of timeline analysis of software corrective and preventive maintenance.
(b) Determination of mean-time-to-repair (MTTR) as well as mean-time-to-repair for the 95% percentile of the timeline data.
(c) Determination of optimum performance of software corrective and preventive modification tasks, including frequency and duration.

System Hardware/Software Effectiveness Definitions

System Effectiveness - the measure of the degree to which the hardware and software achieve the mission requirements in the operational environment as evidenced is system availability, dependability and capability.

System Dependability - the probability that the hardware and software will perform successfully during one or more required sequences of a mission, given the hardware and software status at the start of the mission (availability).

System Capability - the probability that the hardware and software can achieve the required mission objectives given the operational conditions, including data environment, during the mission.

System Availability - the probability (or proportion of operational time) that the hardware and software is in the required operable and committable state when the mission is required with a specified data/environment.

System Effectiveness Model - a mathematical model encompassing both hardware and software for a prior prediction, a pre-operational test evaluation or an operational demonstration of the deliverable system effectiveness.

(a) The model should encompass the foregoing defined parameters and include a practical means of computation and analysis.
(b) Implementation of the model is generally demonstrated with data from other programs or data assumed from requirements, prior to application in the current program.

1980 IEEE Mechanical Reliability Committee Report

During 1980 the Mechanical Failures Prevention Group (MFPG) held two symposiums and completed plans for a Spring 1981 meeting. The first symposium addressed "Failure Prevention in Ground Transportation Systems" and was held at the National Bureau of Standards, Gaithersburg, Maryland, from 22-24 April 1980.

The objective of this symposium was to bring together experts concerned with failures in ground transportation systems with the intent of discussing significant failure prevention methods and flaw detection techniques. The conference was organized in sessions addressing: Rail Vehicles and Structures, Highway and Road Bridges, Pipeline Transportation Systems and Motor Carrier Activities.

The Rail Vehicles and Structures Session covered:

- Component reliability of railroad freight cars
- Mechanical behavior and potential failure mechanisms of railroad locomotive parts
- Fracture of steel plate materials under abrasive service conditions in railroad tank cars
- Fracture analysis of cast steel components in rail vehicles
- Requirements for on-board failure detection systems for rail vehicles
- Detection of defects and prevention of rail failure
- Automated NDE for detection of braking abnormalities on trains

The Highway and Road Bridges Session covered:

- Failure analysis of highway bridges
- Failure analysis of rapid transit bridges
- Bridge welding and fracture control
- Theory and design of instrumentation for bridge investigations

The Pipeline Transportation Systems Session covered:

- Ductile fracture analysis of coated systems
- NDE - defect sizing in pipeline welds
- Development of welding consumables for arctic pipelines
- Analysis of pipeline failure data
The Motor Carrier Activities Session covered:
- Regulation, legislation and transients: an equation for highway safety
- Stress systems related to fracture of ductile and brittle materials
- Perspectives on diagnostic systems
- Investigation of defects in motor carrier activities

The second symposium was on Detection, Diagnosis, and Prognosis (DD&D): Contribution to the Energy Challenge, at Santa Monica, California from 7-9 October 1980. The DD&D Technical committee of MOPG forms a technological program approximately every two years to address the prevention of mechanical failures by means of DD&D techniques and equipment. The purpose of this symposium was to address this problem and aid communications between those involved with the reduction of mechanical failures in the various energy fields.

The symposium consisted of five technical sessions as follows:

Energy Management Session
- Smithsonian Air and Space Museum DD&D
- Energy Management System
- Statistical Analysis of Core Barrel Motion Orbits
- Marine Performance Monitoring System for FF 1052 Class Steam Plants
- Surveillance of PWR/PWR Control Feed Valves

Techniques for Detection Session
- Oil Debris Detection Progress
- Advanced Radioactive Engine Wear Analysis
- Shipboard Measurements of Water/Oil Concentration Using Clamp-On Ultrasonic Sensors
- Oxygen Sensor for Automobile Combustion Control
- DD&D of Gas Turbine Engine Health with the Use of Fiberscopes

Better Availability Session
- Integrated On-Board DD&D System for Military Application
- Progress with Pielsch Engine Diagnostics and Experimental Results
- Air Energy Conservation Concept for Operating Machinery
- On-Board Gas Turbine Mack Truck
- Marine Ball/Roller Bearing Monitoring by Shock Pulse Monitoring

Diagnostic and Prognostic Techniques Session
- Conservation: Loss Prevention and Risk Management
- Recent Experiences with Steam Turbine Disc Cracking
- A Doppler Technique for Detecting and Locating Excessively Vibrating Blade in a Running Turbine
- IMACS TM Cost Saving Estimator, a Trade-Off Analysis for a Built-in Monitoring System
- Operating Experience with Advanced Computer Based Surveillance System
- Mechanical and Aerothermal Diagnostics for Turbo Machinery

Opportunities for DD&D in the Energy Field Session
- Data Acquisition and Analysis in the DOE/NASA Wind Energy Program
- Periodic Vibration Monitoring in the Synthane Coal Gasification Pilot Plant
- A Computerized Broken Blade Monitor for a Nuclear Fuel Bundle Shearing Machine
- Tidal Hydroelectric Power
- DD&D in Geothermal Energy

The Spring 1981 meeting of the MFPO on Innovation for Maintenance Technology Improvements will be held at NBS, Gaithersburg, Maryland on 21, 22, and 23 April 1981. The meeting will emphasize innovation for maintenance engineering technology improvements and address such issues of national scope as:
- New Approaches to Effective Maintenance Engineering
- Prevention of Equipment and Vehicle Deterioration
- Increased Service Life
- Improvements in Material Durability
- Research for Improved Maintenance Engineering
- Improved Processes for Maintenance Applications

The major goal of the meeting is to provide descriptions and demonstrations of new technology for maintenance engineering applications to obtain improvements in safety, readiness, productivity, and cost savings. Equipment areas include transportation, manufacturing, communications, plant, and military vehicles.

Solar Energy Device Reliability Report

January 5, 1981

The Solar Energy Device Reliability Committee was established at the April 24, 1980 meeting of the Reliability Society Administrative Committee. A Charter for the Committee has been prepared defining the field of interest and objectives. The following people have agreed to serve on the committee:

Steven E. Fonsen
Energy Systems Engineering
Massachusetts Institute of Technology

Frank J. Mollura
Systems Engineering Section
Rome Air Force Development Center

I. Arnold Lesk
Motorola, Inc.

Gerald T. Noel
Solar Energy Materials & Systems
Battelle Memorial Institute

An attempt to arrange a special session at the IEEE Photovoltaic Specialist Conference held in May, 1981 was unsuccessful as the conference organization was too far advanced when this committee was established. It is anticipated that special sessions focused on reliability will be featured at the 16th Photovoltaic Specialist Meeting.

Submitted by:
John D. Meakin
Chairman
Solar Energy Device Reliability

Human Performance Reliability Report

Activities over the period have centered on two interest areas: (1) development of a tutorial on human performance reliability, and (2) monitoring of human performance reliability developments relative to the design of nuclear power plants. The activities in each of these areas are summarized below.

Tutorial on Human Performance Reliability

Because of the increased focus on human performance reliability and because methods for predicting human performance reliability have not been made generally available, a two-day tutorial relative to this topic was planned. The tutorial was planned for administration in the Washington, D.C. area with a fee of $259. The fee would be reduced to $250 for IEEE Reliability Society members. Permission to proceed with the planning/implementation of the tutorial was requested and we are advised that a conference answer will be on hand shortly after the first of the year. If approval is received, the tutorial will take place either in June or October, 1981. The faculty for the tutorial is tentative and includes A. Siegel (Applied Psychological Services), J. Jenkins (Nuclear Research Council), K. LaSala (Naval Sea Systems Command), and D. Rahaja (Booz, Allen, & Hamilton). One or two additional faculty members will be sought. Authorization to spend up to $500 for documented costs related to the tutorial was also requested. These funds would be returned from the income from the tutorial and all profits would be turned over to the Society.

Monitoring of Nuclear Energy Developments

A number of meetings have been held by the IEEE Standards Office Working Group 5.5 relative to the human factors in nuclear plants. Some of these meetings have been attended by A. Siegel. The position taken has been that the Human Performance Reliability Committee will continue to cooperate with Working Group 5.5 and will be pleased to review, from the point of view of our concern, any reports of documents which emerge from the efforts of Working Group 5.5.

The following persons have been added to our Committee:

Mr. James Jenkins, NKC
Mr. Dev Rahaja, Booz, Allen, and Hamilton

Sincerely
David P. Wagner
Secretary
NSRS Committee

International Reliability Committee

1. International meeting of IEC Technical Committee No. 56 on Reliability and Maintainability will be held in Tel Aviv, Israel, March 23-27, 1981.

2. In preparation for above meeting, the USA Technical Advisory Committee, chaired by Dr. Lee Weaver, will meet on January 27, during RAMS, in Philadelphia. Principal topics for the Tel Aviv agenda include the following:

- Definitions - updating Reliability Testing - including design of test cycles and preferred test conditions.
- Maintainability - including design studies and maintainability verification.
- Failure modes and effects analysis.
- Future work proposals include preparation of an international standard on software reliability. The USA is taking a negative position on this proposal.

3. The USA has submitted a recommendation to expand the scope of IEC TC 56 to include quality assurance.

4. The US National Committee met in Clearwater, Florida on January 23, where the agenda included progress of the certification program for electronic components.

Respectfully submitted,
M. P. Smith

Summary of NSRS Activities in 1980

The Nuclear Systems Reliability and Safety Committee has been involved in two major activities during 1980:

1. We received IEEE standards project authorizations for a document dealing with qualitative common cause failure analysis, designated Project 831. The title of the document is "Guide for Qualitative Common Cause Failure Analysis of Engineered Systems." We are currently collating comments from our first committee ballot and other segments of IEEE.

2. A Working Group on Risk Evaluations of Radioactive Waste Management has been formed. Dr. T. H. Smith of EG&I Idaho, Inc. is chairman of the Working Group.

The role of the Working Group is to (1) act as a third-party reviewer of selected criteria, standards, and major studies related to risk evaluations of radioactive waste management, and (2) recommend acceptable approaches, procedures, and data bases for these risk evaluations. These recommendations will be for consideration by regulatory bodies and other groups funding such risk studies.

Sincerely
David P. Wagner
Secretary
NSRS Committee

Chapter Activities Report

Chapter Activities - Awards

Ten of the eighteen eligible Chapters replied to the Chapter Awards Program. The award certificates for the 1st, 2nd and 3rd
Welcome to New Members

The names and addresses of new members, from November 1980 through December 1980, are listed below. For members outside the USA, they are listed by alphabetical order of their country's English name.

ALABAMA
Sherman M. Banko
Route 10
Box 455
Athens, AL 35611

Sachie Thanawat
231 Elm St.
Asbur, AL 36060

Raymond C. Watson Jr.
SouthEast Inst. of Tech.
P.O. Box 1485
Huntsville, AL 35807

ANZIO
George M. Goodrich
1821 E. Ihn St.
Tucson, AZ 85719

Jennings D. Neylon
Product Eng. Burr Brown
P.O. Box 1140
Tucson, AZ 85734

Cindy A. Sutton
IBM 635900-2
Tucson, AZ 85744

CALIFORNIA
Mervy S. Ashcraft
Lyon Station
5506 Caroga Ave.
Woodland Hills 91367

John J. Barnes
4628 Air Ave.
Fremont, CA 94536

S. E. Belsley
793 Campbell Ave.
Los Altos, CA 94022

Fred L. Curry
2230 Tenth St.
Berkeley, CA 94710

Walter J. David Jr.
836 S. Sepulveda Dr.
Redondo Beach, CA 90277

Mike Drackin
1501 Parrot St.
San Marino, CA 91104

Juanita F. Exeke
650 S. Calle De Los Angeles
San Jose, CA 95127

Ted Fleischer
109 Fairmont
Oakland, CA

David L. Franklin
3001 W. 24th St.
Apt 4B
Evansville, IN 47712

TWIN CITIES
A. E. Huffman
1100 Industrial Rd.
St. Paul, MN 55113

Ryan B. Schwartz
115 West 2nd St.
New Haven, CT 06510

WASHINGTON/NORTHERN VIRGINIA
Paul Rokitis
2310 Old Canal Rd.
Rockville, MD 20854

Joel M. Schoen
ITT Telsis
1 Research Dr.
Shelton, CT 06484

COLORADO
T. S. Bacon
SEFR
1617 Colby Blvd.
Golden, CO 80401

James R. Beall
3422 W. Berry Dr.
Littleton, CO 80123

OHIO
W. J. Wrangin Jr.
1206 NW 39th St.
Coral Springs, FL 33065

David J. Girard
805 N. Thayer Ave.
Orlando, FL 32803

Stanly J. Jones
1803 Seneca Dr.
Largo, FL 33770

Geoff N. McNico
1985 Hunter Rd.
Bradenton, FL 34203

Alfred E. Westin III
132 1st St.
Belmar Beach, FL 33535

GEORGIA
Anastasia G. Baltikis
251 N. Second St.
Bainbridge, GA 39817

Victor A. Yar Flatt.
 axs3143 Bldg. E
Salisbury, MD 21801

Stephen R. Meyer
789 N. 1st Street
Flint, MI 48504

IOWA
Kemper B. Audino
900 Third Ave.
Des Moines, IA 50309

David J. Hilsenrath
1771 S. Echols Rd.
Los Angeles, CA 90438

Richard B. Stearns
2224 Old City Rd.
Bloomington, IN 47402

CODWELL
L. Darlene Frenny
3234 Century
Wichita, KS 67220

MARYLAND
Paul C. Condron Jr.
609 Cherry Ave.
Parkton, MD 21120

Gregory Delantin
6120 Golden Hill
Columbia, MD 21044

George A. Douglas
800-2000 McCormick Rd.
4330 East West Highway 718
Bethesda, MD 20816

J. P. McGuire
Camelot Arpt Arthur Ct.
Apt 571 Bldg. E
Salisbury, MD 21801

Vernon J. Sprague
2424 Wood St.
Annapolis, MA 21401

MASSACHUSETTS
James C. Concannon
10 South St.
Medford, MA 02155

Kevin C. Daly
519 1st Street
Cambridge, MA 02139

Pamela B. Farnen
N.E.C. Computers Inc.
175 Worcester St.
Worcester, MA 01608

David B. Warming
275 Lookout Circle
Ann Arbor, MI 48103

Richard B. Ferrante
17 Rackliff Rd.
Apt D
Boston, MA 02134

Ronald A. Hill
114 North St.
South, MA 01775

David W. Jackson
P.O. Box 100
Summer St.
Bostons, MA 02110

Cobin B. Willmar
917 South Lake
Buffalo Grove, IL 60009

C. H. Witchard
26 W. 200th Clt Crk Rd.
Whitman, MA 01887

Kathryn A. Myles
114 Cliff Rd.
Wellesley Hills, MA 02181

Donald A. Miller
Lexington, MA 02173

E. R. Sanchez
21 Harrington Ave.
Woburn, MA 01801

Nils R. Sandell Jr.
3 New England Executive Pl.
Burlington, MA 01803

Richard P. Stone
12 Sandy Lane
Charlestown, MA 02124

MICHIGAN
Randall A. Booth
5361 Kraft Rd.
Grand Rapids, MI 49508

Glen Dorenme
403 Coachman Dr.
Portage, MI 49024

Tony L. Hoffer
Great B. Gipson
Michigan Tech.
Dept. of Elec. Eng.
Houghton, MI 49931

Russell L. Jacobs
2421 8th St.
Stevensville, MI 49127

Dana W. Searle
Royal Oak, MI 48073

Timothy W. Kaufman
3312 Trafalgar Apt. 8
Livonia, MI 48152

David B. Wasing
1079 Lookout Circle
Ann Arbor, MI 48103

Stephen A. Zarcza
1610 Christian Hills Dr.
Rockford, MI 49343

MICHIGAN
Robert L. Frank
ITT VACI
1 Research Drive
Sharon, CT 06064

VICTORIA
V. R. Lalli
21006 Brookpark Road
Cleveland, OH 44135

BRIGHTON
Joseph J. Rixford
20 Merrill Rd.
Bingamon, NY 14815

BOSTON
Michael L. Johnson
RCA Corporation
P.O. Box 1938
Bedford, MA 01730

CANTERVAL
Robert H. Futskan
2060 Plantation Drive
Melbourne, FL 33201

CHICAGO
Henry A. Malec
ITT ATEC
1 Research Drive
Sharon, CT 06064

Baltimore
Bernard A. Bings
4208 Wicklend Road
Baltimore, MD 21210

BINGHAMTON
Joseph J. Rixford
20 Merrill Rd.
Bingamon, NY 14815

BOSTON
Michael L. Johnson
RCA Corporation
P.O. Box 1938
Bedford, MA 01730

CANTERVAL
Robert H. Futskan
2060 Plantation Drive
Melbourne, FL 33201

CHICAGO
Robert L. Frank
VICTOR
390 N. Rockwell St.
Chicago, IL 60607

BOSTON
Michael L. Johnson
RCA Corporation
P.O. Box 1938
Bedford, MA 01730

CANTERVAL
Robert H. Futskan
2060 Plantation Drive
Melbourne, FL 33201

FLORIDA
Chet M. Kornmier
14600 80th Ave.
Largo, FL 33750
Engineering, which also contains an article by Rolls-Royce and Avionics and a lead article by a Nuclear Reactor Rod Control System. The latter includes the statement "The complexity of the risk assessment model dictated that a computerized assessment was preferable," and reference to a program labeled SMOAKIT.

Automated reliability analysis is the topic of a paper, "Reliability Analysis Computer Programs" by Melvin T. Chambers, presented at the IEEE Engineering Management Conference. The paper describes several NASA, DoD and Department of Energy Reliability Analysis Programs. Mr. Chambers also provides a list of DoD's requirements for computer programs in areas in which advances were made in 1980. These are:

- Application of graph theoretic methods of network reliability analyses
- Application of Fourier series to Bayesian techniques
- Application of Boolean/switching algebra to the reliability analysis of complex networks
- The continued development and availability of computer programs for periodic assessments
- The continued development of computer programs for performing exhaustive tie-set and cut-set enumerations for complex systems
- The application of data management systems to searching and sorting FMEA and other tabular analyses to fulfill unanticipated ad hoc report requests.

Many of the programs mentioned above require failure rate estimates as an input. These estimates themselves can be obtained as computer programs. Many companies have automated the procedures for performing reliability predictions in accordance with MIL-HDBK-217. In addition, Defense Contractors can obtain access to a government owned prediction program (RADC-ORACLE) at least one program (PREDICTOR) is available commercially.

RADC-ORACLE is resident on the Rome Air Development Center (RADC) computer. By agreement with RADC, DoD agencies can now access the program from terminals at their facilities through communication links such as the ARPA computer network. They can also provide access to their contractor's and subcontractor's failure rates for use on DoD contracts. All three services and at least three contractors are now using RADC-ORACLE. The program also provides a system reliability modeling technique to accommodate redundant systems.

Access to RADC-ORACLE is limited to DoD agencies and their contractors for use on DoD programs only. Other agencies who do not wish to develop their own reliability prediction programs can lease one called PREDICTOR from Management Sciences, Inc. (MSI) Albuquerque NM. MSI offers a series of programs. The Reliability PREDICTOR, as the name implies, provides a reliability prediction service. There is also a parts list PREDICTOR, a block diagram evaluation PREDICTOR, a maintainability predictor (MIL-HDBK-472), a failure modes and effects PREDICTOR (MIL-STD-1629A), a PREDICTOR catastrophic analysis program and a fault tree analysis program (MIL-STD-882A) called

RESULTS. The programs are designed to be compatible in that, for example, failure rates derived by one program, for example, VAXITRACK, can be used as inputs to other programs. MSI reports that the service is currently used by over 100 companies including some government agencies.

As the preceding discussion implies, there are significant advantages to interfacing computer programs. An ambitious example of this is the Integrated Thermal Avionics Design (ITAD) Program at Air Force Avionics Laboratory (AFWAL). ITAD is an interactive computer aided design program intended to help create optimum avionic designs using a set of programs for analyzing routability, reliability, thermal, electrical, environmental and other considerations. Design options and comparisons of features are displayed on color graphics terminals for the designer's selection. The program began in 1979 and will be completed in 1983.

Computer Aided Design will also be a feature of the DoD Very High Speed Integrated Circuits (VHSC) Program. The program calls for development of 30 gram computer programs, such as each by 1983 and 100,000 or more gates each by 1986. Besides Computer Aided Design, fully automated testing is planned. In addition, the relative capabilities of low cost circuitry will be taken advantage of by creating on chip built-in-test and automated reconfiguration capabilities using on chip redundancy. These features will not be merely convenient. They will be an absolute necessity.

Even today, the complexity of devices makes testing a significant problem. As stated by Mr. Charles Windisch of RADC:

Microprocessors, despite revolutionary digital design and manufacturing many new benefits, have brought along a host of their own problems. The most notable of these is in the testing and reliability proving area. One hundred percent testing is a practical impossibility, hence, alternative approaches must be sought. For example, the approach being investigated on one project at Remsco Technical Institute is the weak point test. Shot programs are written which exercise different functional parts of the microprocessor. Then, these programs are run while the device is subjected to elevated temperatures or higher than nominal voltage. The resulting data is analyzed for errors and then traced back to uncover weak points in the design.

The RADC Reliability Branch is also using automation to keep track of the changes in the dynamic microcircuit and semiconductor technologies. They have created a two program Microcircuit Reliability Analysis Program (MRAP) and Semiconductor Reliability Analysis Program (SPAR).

The programs compare an input circuit with a data base and, for each part, lists whether or not a military specification is available, a QPL source exists, an alternate military specified part is recommended, the device is recommended for new designs, there is standardization action pending. Besides its use by RADC personnel in evaluating proposed program parts lists, the programs are used to generate listings to aid designers in selecting equipment, and listing new parts. The database includes the specification status and QPL status for each device by specification and shaksh sheet designator. It also provides a recommended substitute if a particular device is not recommended for use in new designs. A search of the program provides cross references to the data by commercial or generic part number. A third listing cross references the military specification/shak sheet designator and generic number by DESC drawing numbers. About 200 copies of these listings have been provided by RADC to interested users to aid their part selection. The listings are updated automatically by RADC as required by changes in the MRP and SPAR data bases.

A final example of R&M computer software is a program for optimizing burn-in procedures originally published in 1978 in RADC-TR-78-55 "Electronic Equipment Screening and Debubging Techniques." The program has been used by the Navy to design a screening program for the MK-47 torpedo and by various industrial firms, one of whom estimated that its use could result in a cost avoidance of $900,000 a month. Screening remain an area of high interest, with the Institute of Environmental tests which revolves around a government standard, and RADC continuing to fund research to provide inputs to such a standard. A survey of the current burn-in knowledge was done by RADC in 1980 and will be published in 1981 as an RADC Technical Report entitled "Burn-In Which Environmental Stress Screens Should be Used?" Among other findings, the report questions the adequacy of ten thermal cycles cited in government documents including NAVMAT P-9492 "Navy Manufacturing Screening Program," the only government screening standard now available.

In another form of software, that of published documents, the most recent is the release of DoD directive 5000.80 "Reliability and Maintainability" on July 8, 1980. The directive provides DoD standard R&M terms and mandates R&M accounting using terms related to operational effectiveness and ownership costs.

These terms were anticipated by the Air Force and already implemented in AFP 80-5 and AFSC Supplement 1, both released in 1979. MIL-HDBK-27C "Reliability Prediction of Electronic Equipment," Notice 1 was published May 1980 with major changes intended to further the standardization of solid state device models. In December 1980, proposed MIL-HDBK-217D was released for coordination review, in accordance with the procedures (RADC), policy of annual periodicals. The proposed revision will add CCD, Bubble Memory and GAAS FET models and change the environmental factors, except for avionics environmental factors, which will be changed in the 1982 revision.

MIL-STD-785B "Reliability Program for System and Equipment Development and Production" was published 15 Sept. 1980 by the Air Force Avionic Systems Division programs. The program comprises an input form in a team assembly for tailoring to specific procurements.

In printing and perhaps available by the time this report is issued, is MIL-M-87376 "Reliability Growth Management" prepared by the US Army Communications Research and Development Command.

In coordination with the Navy is a revision to MIL-HDBK-472 "Maintenanceability" adding a new predictive maintenance technique developed by RADC. The proposed change will be the first since the publication of the handbook in 1966. Also in coordination is MIL-STD-471, "Maintainability Design Guidelines," which is prepared for use in new designs, among other things, a means for measuring testability requirements.

Still in preparation are changes to MIL-STD-470 "Maintainability Program" and a proposed new standard on evaluation, human performance impacts on Reliability and Maintainability.

The IEEE Reliability Society Nuclear Systems Reliability and Safety Committee is preparing a "Guide for Qualitative Common Cause Failure Analysis of Engineered Systems". This is one of the two major activities report by Mr. David P. Wagner, Committee Secretary. The other was the formation of a Working Group on Safety Evaluation of Radioactive Waste Management headed by Dr. T. H. Smith of EG&G, Idaho, Inc.

Mr. Wagner reports the role of the working group will be to:

(1) seek areas of commonality among safety evaluations of radioactive waste, wherein common guidelines, assumptions or methods can be recommended as standard practice;
(2) present the recommendations to decision-making bodies such as regulatory agencies; and
(3) serve as a peer review body to provide comments on proposed regulations and on major studies.

Dr. Lee A. Weaver, Technical Advisor to Technical Committee 56 of the International Electrotechnical Commission reports the committee is currently developing and publishing 2 major documents.

IEC publication 605 is a standard that gives procedures for equipment reliability compliance and determination testing. The expected publish date of the eleven parts which comprise the standard are given below:

Part 1: General Requirements - Published 1978
Part 5: Compliance Test Plans for Success Ratio, 1981
Part 6: Tests for the Validity of a Constant Failure Rate Assumption, 1981
Part 7: Compliance Test Plans for Failure Rate and Mean Time Between Failures
Assuming Constant Failure Rate, published 1978.
Part 8: Tests for the Validity of a Non-constant Failure Rate Assumption, 1983
Part 9: Compliance Test Plans Assuming Weibull Distribution of Times to Failure, 1983
Part 10: Compliance Test Plans Assuming Normal Distribution of Times to Failure, 1983

The second IEC publication is a guide on maintainability which is being developed in seven parts. The expected publish dates are as follows:

Part 1: Introduction to Maintainability 56 (General Office) 68, 1981.
Part 2: Maintainability Requirements in Specification 56
(Continental Office) 69, 1981.
Part 3: Maintainability Program 56 (Continental Office) 70, 1981.
Part 7: Collection Analysis and Presentation of Data Related to Maintainability, 1983.

Documentation relating to testability made some significant advances in 1980. The Industry/Joan Services Automatic Test Project issued its final report in June 1980 presenting a comprehensive survey of the field and detailed recommendations. The task team involved over 800 representatives of all services, DoD, the Aerospace Industries Association (AIA), Electronics Industries Associates (EIA), National Security Industrial Association (NSIA), Shipbuilders Council of America (SCA), American Electronics Association (AEA), and countless industrial concerns. Copies of the report may be requested from Tom Butler Jr., 1103 15th Street, N.W. (Suite 5901) Washington DC 20005.

Also on Testability, the Rome Air Development Center completed publication of a series of technical reports designed to provide the foundations for a Testability Engineering Discipline. The reports cover the specification and demonstration of testability features of weapon systems and associated software. Testability requirements are listed, with other RADAC reports on R&M, in a bibliography entitled "Reliability and Maintainability Reports of the Rome Air Development Center, Available in DARPA 1980; 1981." The listing covers reports on device reliability, system/ equipment reliability and maintainability (including testability) and software reliability. Copies may be requested from RADAC/ RBET (A. Coppola), Griffiss AFB NY 13440. Not included in this listing, however, is a report "Baysian Reliability Demonstration Made Practical" now in printing for release as a RADAC Technical Report in 1981. It is intended to spur the use of Bayesian Test techniques (by providing a simple, practical and believable approach.

Also published in 1980 was a text "Reliability and Maintainability of Electronic Systems" edited by J. E. Arsenault and J. A. Roberts, edited by Computer Science Press, Inc., 9125 Fall River Lane, Potomac MD 20854.

Finally, the field itself has been a topic of considerable interest. This year's report, prepared by Mr. Alan Sukert who was responsible for the RADAC Software Development Program until his departure in December 1980. (Editor's Note - See also the report of the ADCCOM Committee on Software Reliability in this issue).

During 1980 the RADAC program in software reliability achieved considerable progress. The major software reliability model development efforts were completed. The initial good results of experimental validation efforts for these two models indicated a strong potential for their use as a basis for a standardized set of software reliability estimation techniques. The first model, developed by IBM, uses binomial and Poisson distributions for the time to detect software faults which incorporate the important assumptions of a non-constant error detection rate and a non-trivial probability of error generation during error correction. The second model, developed by Syracuse University, assumes a non-homogeneous Poisson process for the cumulative number of software faults detected as a function of time. These two models, in addition to several others such as the Jelinski-Moranda and Shooman Exponential, are now being rigorously validated against software error data being collected through a three-year validation and integration testing of a large on-going Air Force command and control software development project.

In addition to these two software reliability modeling efforts, additional software reliability research is ongoing. The above two models, plus several other newly formulated software reliability models, are being extended to incorporate differing data sources and for other software fault detection process as more about this process becomes understood. The initial development of a framework to specify combined hardware/software reliability models and related figures of merit, which can be used to specify system reliability, in underway. This framework will be extended over the next few years to incorporate system reliability considerations as they pertain to fault tolerant and redundant systems. The initial model is based on the current University of Syracuse University and others to provide a more statistical basis, based on optimization with respect to software cost, reliability, and other related criteria, for formulating software development strategies, for making software procurement decisions, and for determining software maintenance policies. These optimization techniques are also being applied to develop a software/hardware reliability tradeoff capability throughout the software life cycle based on the estimation of reliability and cost criteria. Investigations into the theoretical understanding of both software and programming language complexity are providing important new insights into complexity, and through which the achievable reliability of a software system before actual coding begins can be determined. Although the above investigations and research are ongoing, some significant results are now becoming available from experimental application of these techniques to small ongoing software development projects.

The most significant result of the work in software reliability standardization have been the development of two draft handbooks. The first deals with procedures for specifying and measuring software reliability metrics, i.e., measuring the software reliability of a given software development process or measurement cycle, including maintenance. Part of this software quality measurement handbook involves the formulation of quantifiable measures, called metrics, and their associated data requirements which will permit the specification of software reliability goals in RFPs. This software quality measurement technology is currently being applied to the Army RVP project, and two software reliability measurement systems are in progress. The second handbook, due for completion in December 1980, will provide guidance and procedures for performing software reliability assessments on a software model development. This guidance will include discussions on aircraft software modeling technology, the necessary data for model input, and the various model outputs can be used to perform any required software reliability assessment. Both of these handbooks will form the basis for the development of standardized software reliability prediction and estimation procedures, which will take the form of appropriate MIL-HDBKs and MIL-STDs. It is expected that by the end of CY81 the first draft of MIL-HDBK on software reliability and quality assessment will be completed.

The next few years should see an increased emphasis on system reliability models using the current model frameworks as guidelines. New software reliability techniques, specifically oriented to distributed system technology, will be investigated. Critical experimental validation of current software reliability models will be completed, resulting in a better understanding of model applicability and the preparation of complete model usage guidelines. Finally, the standardization of software reliability techniques, including not only the software modeling and quality measurement technologies but additional proposed techniques such as software «MELA» will become firmly established, and result in software reliability equivalents for the various hardware reliability standards such as MIL-STD-781.

Submitted by
Anthony Coppola
Chief, ARDCOM
Advanced Reliability Technology Committee
IEEE Reliability Society

Reliability Program Standard Revised

The basic standard for military reliability programs, MIL-STD-785, has been revised. The "B" version of this document is dated September 15, 1980, and is the first change to the document since March 1969. Government and industry users of the document will find significant changes in both format and content of the standard. Some of the significant changes are:

- The document is intentionally structured to discourage in discriminate blanket applications. Tailoring is forced by requiring that specific tasks be selected and, for those tasks identified, that certain essential information relevant to implementation be included in the application document. This provides greater use of good practices for determining system reliability and for determining software maintenance policies.
- Many of the tasks solicit facts and recommendations from the contractor on the need for, and scope of, the work to be done rather than requiring that a specific task be done a specific way. The selected tasks can be tailored to meet specific and peculiar military, space and end user needs.
- Appendix A to the document, "Application Guidance for Implementation of Reliability Program Requirements," is 31 pages of rationale and guidance for the selection of tasks to fit the needs of any reliability program. This appendix is to be used to tailor reliability requirements in the most cost effective manner that meets established program objectives.
- Increased emphasis has been placed on reliability engineering tasks and tests. The thrust is toward prevention, detection, and correction of design deficiencies, and workmanship defects. Reliability accounting tasks have been retained, and expanded to serve the needs of acquisition, operation and support management.
- A sharp distinction has been established between basic reliability and mission reliability. Measures of basic reliability include all item life units (not just mission time) and all failures within the item (not just mission-critical failures of the item itself).
- New tasks include: Electronic Parts/Circuits Tolerance Analysis, System Circuit Analysis and Environmental Stress Screening, Reliability Development/Growth Test Program, and Failure Review Board.

Copies of MIL-STD-785B should be available after December 1, 1980 from: Commanding Officer, Naval Publications and Forms Center, 5801 Tabor Avenue, Philadelphia, PA 19120.

Help Wanted

Apply to A. Coppola RAD/CBET, Griffiss AFB NY 13440

COMMUNICATOR: To be editor of this newsletter. Duties will be to gather information, and provide in legible form to IEEE Headquarters by establishing due dates for printing. Pleasing supply of Reliability Society stationery provided for solicitation. Chapter Chairman and ADCOM members for news.

AGITATOR: To obtain more practical papers for the IEEE Transactions on Reliability. Title of Special Papers Chairman, elegant letterhead provided. Duties will be to bug all potential contributors until Ralph Evans is buried in practical papers. Types of papers desired are:

1. Case histories.

2. Reliability techniques which were actually found to be useful on a job, and those which were not useful or were too expensive.

3. How you set realistic R&M requirements for a system or equipment.

4. What kinds of reliability testing were actually cost-effective.

5. Use of reliability data from the field instead of from special reliability tests. Comparison of field data with reliability test results.

6. Comments on the worth of standards such as the many international or US military standards on reliability.

7. Ideas, from experience, on the major obstacles to setting and achieving worthwhile reliability requirements in commercial, military or other fields.
8. Where to find information. For example, a list of trade and professional journals of value to electronics reliability and quality control practitioners.

9. Information summaries. For example, annotated lists of computer programs for analyzing electronic circuits or for generating fault trees; tell what the programs do, how big a computer they need, and where they are available.

CONTRIBUTORS—All Types:
1. Practical Papers: See wish list above. Send submissions or ideas directly to Ralph A. Evans, Editor, IEEE Transactions on Reliability, 804 Vickers Ave, Durham NC 27701.
2. Newsletter Items: Any item of interest to the R&M Community welcome. Also comments, kudos, and criticisms. By-lines provided or omitted as desired.
3. Humor: The Transactions provides a few laughs along with all those equations in a series called "Landmarks in R&M Engineering". If the Transactions can be funny, so can the Newsletter. All contributions welcomed (keep it clean and, preferably, topical). Will by-line or publish anonymously as desired.

Reliability Society Album
The Society honored three pioneers in Reliability at the Awards Banquet held January 27, 1981 in the Philadelphia Marriott Hotel.

Dr. Benjamin Epstein (left) receives his award from Dr. Regulinski; Society President, for laying basic foundations of the statistical theory of Life Testing and for development of its mathematical models.

Mr. Clifford M. Ryman is recognized for the development of the method and rational underlying the practice of failure rate predictions.

Dr. John H. E. Kao (left) is honored for originating the Weibull Probability Paper for the Development of the Graph analytic method of reliability analysis.

These photos were taken for the Newsletter by H. C. Jones. Your contributions welcome. Chapter chairman—please send some pictures of your activities.

CALL FOR PAPERS
1982 ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM
January 26, 27, 28, 1982
Biltmore Hotel
Los Angeles, CA

THEME: Increasing Productivity—Assurance Technologies' Contributions

The topic of Productivity continues to be a major concern to all elements of our society. The need for more effective and efficient operations in industrial, commercial, and government activities clearly implies the requirement for more reliable and maintainable systems.

The 1981 Symposium addressed the role of the Assurance Technologies in improving Productivity. At the 1982 Symposium in Los Angeles, we shall concentrate on the contributions made to increase Productivity.

The Program Committee, therefore, solicits results-oriented papers that describe how improved Productivity is being achieved through the effective application of new and existing R&M and related techniques.

PAPER SUBMISSION REQUIREMENTS
If you wish to present a paper, now is the time to contact us. It is requested that you observe the following:
- Submit the title, author(s) and a Summary of not more than 1000 words.
- Structure the Summary into the following 3 sections:
 (1) Problems or Questions Addressed
 (2) Work Performed on (1)
 (3) Results and/or Conclusions Reached
- Paper Title not to exceed 50 letters and spaces
- Submit brief biographical sketch of the author(s)
- Submit as soon as possible—but May 1, 1981 is the deadline

Please note that initial screening for candidate papers is based solely on these summaries. If a summary does not clearly indicate the paper's value (i.e., the 3 sections outlined above), it will generally receive no further consideration. It is essential, therefore, that your initial submission be carefully prepared.

All papers must be new and must not have been presented at a national meeting prior to the Symposium. Papers presented at local meetings are acceptable. Authors must indicate the status of any previous or planned presentation/publication of the subject material covered in their submittal. All submittals become the property of the Symposium and cannot be returned.

Ten copies of the title, summary and biographies should be sent to:
H. C. Jones
RAMS Program Chairman
Westinghouse, MS 3608
P.O. Box 1521
Baltimore, MD 21203

Authors will be notified of Program Committee decisions by June 30, 1981. Full text drafts will be required by August 1, 1981, for review. Comments from this review will be returned to the authors by September 15. Final papers must be submitted not later than October 15, 1981 and must be accompanied by the author's signed release for publication in the Symposium Proceedings. These dates do not have slack, and authors should fully recognize the responsibility of their commitment to this schedule when the initial submittal is made.
Now is the best time to join our society.

It's always time to upgrade your career. Membership gives you ready access to state-of-the-art meetings and conferences in your areas of interest, and to their published proceedings. You get to meet experts from other organizations and to participate in technical activities with the prime movers in engineering, science and business. Our membership is worldwide. At least one periodical—such as the one you are reading—is included in your Society fee, keeping you abreast of the latest developments in your field. And, as an IEEE member, you may choose from a wide range of books, standards, conference records, employment surveys, short courses and other career-building aids—all at discounted member prices.

Please take this opportunity, now, to broaden your outlook, open your mind to new concepts, new techniques, new fields of interest. There will be no better time. Return the Membership Application form below. (Students should contact their IEEE counselor or write for Student Membership brochure.)

IEEE
RELIABILITY SOCIETY
FEE: $7.00 per year

I am applying for the following as indicated:

[] I am an IEEE member. Please enroll me in the above Society. IEEE member No. __________

[] IEEE membership plus Society membership.

[] IEEE membership only.

Full signature ___________________________ Date __________

First name (print) __________________ Middle initial(s) __________________ Last name __________________

Street address __________________________

City __________________ State/Country __________________ Postal Code __________

APPLICATIONS FOR IEEE MEMBERSHIP
PLEASE COMPLETE THE FOLLOWING INFORMATION:

Date of birth ___________________________ Year __________

Month ______ Day ________ Were you ever a member of IEEE? [] Yes [] No

If Yes, please furnish (if known): [] Male [] Female

Grade __________________ Membership No. __________

EDUCATION (Highest level completed):

Name of educational institution __________________________

Course __________________ Degree received __________________ Date __________

ENDORSEMENT (Signature of one IEEE member, who knows you professionally.) __________________________

Please mail to:
IEEE Service Center
445 Hoes Lane
Piscataway, NJ 08854
U.S.A.