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REMOVABLE SINGULARITIES OF ANALYTIC FUNCTIONS
HarLEY FLANDERS, Purdue University

Here is another proof of the standard result:

If £(3) is regular in 0 <|z| <R and bounded, then there is a unique definition of
f(0) which makes f regular on Iz[ <R.

Consider g(z) =2%/(2). This is continuous on [z[ <R with g(0) =0, and differ-
entiable at each point of the region. In particular

g (0) = lim g(z)/z = lim zf(z) = 0.
z—0 20

Hence g is regular on |z| <R and
g(Z) = b222 + 6323 + s

is its Taylor expansion, since g(0) =g’(0) =0.
Thus f(z) =bs+bsz+ - - -, which makes the definability of f at 0 crystal clear.

GEOMETRIC SOLUTIONS OF ALGEBRAIC EQUATIONS
M. Riaz, University of Minnesota

A geometric method for finding the real roots of algebraic equations is de-
veloped by means of a simple graphical construction made up only of straight
lines perpendicular to each other.

The process is derived for the general case of the nth-order algebraic equation
which is written in the form

¥+ @pgx™ o - s Fat? +ax + a0 =0 (an > 0).

The set of coefficients {@,, @n1, * * -, @2, a1, @0} can be represented geometrically
by a corresponding set of directed line segments of length proportional to the
magnitude of these coefficients, so juxtaposed that each line segment is drawn
at a right angle through the terminus of the preceding segment. The magnitude
and direction of a particular line segment (ax) is given by the vector azei(n—Rr/2,
where e™2 denotes a single 90° turn in the positive or anticlockwise sense
taken with respect to the first vector (a¢.) used as reference. The resulting geo-
metric figure forms a continuous “mth-order path” with a start O at the origin
of segment (¢,) and a finish T at the terminus of segment (a,). A solution to the
equation is determined by finding a new (#—1)-order path having the same
start O and finish 7. The new path progresses as follows: a first line segment
drawn through the origin O is terminated at the point where it intersects the
infinite line on which the segment (@,—1) is located: at that point, a 90° turn is
made defining a second segment which terminates at the intersection with the
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line determined by segment (@,—2): a further 90° turn is effected. The process is
continued until the last intersection occurs at the finish 7. One solution of the
equation is given by x= —tan #, where 8 < +90° is the constant angle between
the two paths, counted positive for an anticlockwise angular shift and negative
for a clockwise shift. The process is illustrated in Fig. 1 for the case of a 5th-
order equation in which all coefficients are positive.
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F1G. 1. Geometric solution of the equation

asx® + agxt + asx® + ax® + axx + a0 =0

(all ¢’s > 0)

That x= —tan 0 is indeed one of the roots of the algebraic equation may
readily be verified by calculating the sequence of lengths corresponding to those
sides of the similar rectangular triangles which are opposite to the angle 6:

xlar + xlos + -+ - + x[ons + 2[ans + 2a,]] - - ]] = — aq,

and by observing that the last relation is identical to the original equation,
though cast in a different form.

The (n—1)-order solution path represents the geometric equivalent of the
reduced (n—1)-order algebraic equation obtained after extracting the first real
root from the original nth-order equation. An (#—2)-order solution path taken
with respect to the (z—1)-order path will in turn produce the second real root
and permit a further reduction in the order. The continued reduction process
can be followed until all the real roots are determined.
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As an example, the cubic equation x*—7x—6=0 is solved geometrically in
Fig. 2 through finding a succession of reduction paths which turn out to corre-
spond to the algebraic sequence x2—2x—3=0 (after extracting x;= —2) fol-
lowed by x—3=0 (after extracting x2= —1). Note that even though the co-
efficient of the x? term in the cubic is zero, the first reduction path (a quadratic
path) has its first 90° turn located on the line corresponding to the x2 coefficient
of the cubic path. The particular choice of reduction sequence is a matter of
convenience.

F1G. 2. Solutions of the cubic equation
x—Tx—6=0
X =—tanf = — 2
Xy = —tanfy = — 1

x3=—tan (— 6;) = + 3

It must be pointed out that a reduction procedure as described is not nec-
essary to find the real roots of an algebraic equation. These roots can be ob-
tained directly by determining all the (z—1)-order paths that fit the original
nth-order path.

The construction of solution paths inherently involves a cut-and-try pro-
cedure. However, the simple technique of using a transparent sheet of square
millimeter paper can greatly facilitate the search for the solution paths. By
turning around the transparent sheet over the drawing of the kth order path,
one can readily observe the manner by which the angular shift between the two
sheets of paper must be adjusted to meet the constraints of the graphical con-
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struction yielding the (k—1)-order path. In fact, with a little practice, the ad-
justment may be effected by scanning visually appropriate lines of the trans-
parency without recourse to actual drawing of construction lines.

The geometrical approach developed here for the solution of algebraic equa-
tion may be extended to cover particular situations: for instance, the calculation
of the value of an algebraic polynomial for a given value of the variable x, or
the calculation of the #th root of a real number. Figures 3 and 4 show the graphi-
cal determination of the square and cube roots, and illustrate the degenerate
case of a polynomial in which all but the first and last coefficients are zero.
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A basic advantage to this geometrical type of solution stems from the fact
that it provides a ready visual “feel” for the solutions. The effects of changing
the coefficients or the order of the original equation on its solution may be
estimated rapidly. Certain symmetries in the coefficients of the algebraic form
have their geometrical counterparts placed in clear evidence. Being a graphical
method, it can only yield the real roots of an algebraic equation with an ac-
curacy that is inherently limited. However, these roots may be calculated to any
desired degree of accuracy by following up the graphical method with a numeri-
cal method (such as Newton’s). By extracting the real roots from the original
equation, the order is reduced and the depressed equation may then be solved
for its complex roots through applying suitable algebraic or numerical methods.

To emphasize, in conclusion, the main features, this geometric formulation
of the solutions of algebraic equations provides:

(a) a conceptually simple method of solution based on purely geometrical
considerations,
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(b) a simple graphical construction requiring for equipment two triangles, a
linear scale and transparent square millimeter paper,

(c) an “analog” technique of solution in contradistinction to the usual
“numerical” techniques of algebraic or digital computation,

(d) an isomorphism between algebraic and geometric methods in mathe-
matics.
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Science, and two modes of thinking. History indicates that many of the
basic laws of mathematics came from “laboratory-type” thinking. Early men
of mathematics were primarily concerned with the laws of nature, laws of the
universe, and the measurement of physical objects. For example, the need for
some method of land measurement, by the Egyptians and Chinese, led to basic
concepts in geometry. The stars, the moon, the sun, and the earth itself became
laboratory objects for the derivation of many other mathematical concepts.
Even earlier than this, one can assume that man’s possession of five fingers on
each hand influenced the basic concepts of arithmetic.

Although one might argue that early mathematical thinking was concerned
with that which was practical, there is also evidence that an “introspective” or
theoretical mode of thinking also existed. This is shown by the fact that man
puzzled over the characteristics of numbers to the extent that secret cults were
sometimes organized around these “discoveries.”

History seems to indicate that for many hundreds of years, the two types of
mathematical thinking, the “applied” and the “pure,” walked hand in hand—
each complementing the other. Nevertheless, as scientific knowledge increased,
strong forces came into focus which tended to separate the two.



