Savio Woo

From ETHW
Revision as of 18:46, 29 December 2015 by WikiWorks (talk | contribs) (Text replacement - "== Biography ==" to "{{Biography}}")

Savio Woo


Biography

Savio L-Y. Woo’s pioneering biomechanics research has profoundly impacted sports medicine and the management of ligament and tendon injuries, leading to improved patient recovery. From research at the cellular and tissue level to developing computer and robotic models of joints, Dr. Woo, together with his six hundred students, post-doctoral fellows, and colleagues, has provided key insight to understanding the function of bone and connective tissue and has led sports medicine and orthopedic surgery into the 21st Century. Dr. Woo helped develop the “controlled motion is good” concept, showing the benefits of joint movement and early weight-bearing activities during rehabilitation compared to immobilization following surgery. His approach to robotic testing of knee and shoulder movement helped define the beneficial effects of motion. He applied computer modeling and robotic technology to study joint mechanics and the effects of injury on joint function. Dr. Woo used robots to produce motions that occur during everyday activities and to determine the forces that the motions generate in the ligaments of the joints. Dr. Woo’s work has resulted in much faster recovery time for patients with soft-tissue injuries. More recently, he has focused on using novel functional tissue engineering to heal and regenerate ligaments and tendons at the cellular, tissue, and organ levels using bioscaffolds.

Dr. Woo began his career at the University of California, San Diego, as a professor of surgery and bioengineering in 1970 and moved to the University of Pittsburgh in 1990, where he founded the Musculoskeletal Research Center (MSRC). Dr. Woo is currently a Distinguished University Professor and Director of the MSRC within the University of Pittsburgh’s Department of Bioengineering and Swanson School of Engineering, Pittsburgh, Pa. In 2012 he received the IEEE Medal for Innovations in Healthcare Technology “For pivotal contributions to biomechanics and its application to orthopedic surgery and sports medicine.”