First-Hand:The D-558-II Project - Chapter 6 of The Experimental Research Airplanes and the Sound Barrier: Difference between revisions

From ETHW
(No difference)

Revision as of 19:21, 4 August 2016

By David L. Boslaugh, CAPT USN, Retired

The Aeronautical Engineering Curriculum - 1950 - 1955

Minnesota law stipulated that any person who graduated from a Minnesota high school had to be admitted to the University of Minnesota, however engineering school applicants also had to pass a battery of engineering aptitude tests before admission to the Institute of Technology. Then there were the “weed-out” courses such as chemistry that all entering students had to take. These further helped sort students into categories that dictated whether you would be moved to the College of Science, Literature, and Arts or whether you would attend the College of General Studies. The professors and their assistants in the weed-out courses were ruthless. The first day in a huge lecture hall, the professor would grimly start his lecture by saying, “Look at the students on your right and left; by the end of the semester they will not be there.” I thought I did pretty well in my first chemistry exam, but when the grades came back, I was devastated to see a C grade. They wanted answers with an order of magnitude higher level of correctness and precision than would be required in high school.

Starting in the late 1940s, the University of Minnesota Regents were expressing their unhappiness with U of Minn. engineering graduates. They were pretty good engineers, but they lacked social graces, were not well rounded, and could not write to save their souls. It was decreed that the engineering curriculum would be expanded from four to five years to turn out more well rounded engineers. We called the extra year of instruction the “culture courses” and they would be interspersed among the regular engineering studies. Most of the culture courses were elective, however there were a number of mandatory “technical writing” courses for engineering students. Following is a summary of the culture courses this student took:

  • Five technical writing courses; three in first year, two in fifth year
  • Other elective culture courses:
    • History 22
    • Social Science 13 - Humanities
    • Classics 24 - Technical Latin and Greek (Has been useful all my life)
    • Astronomy 51
    • Geology 1
    • Psychology 1 and 2
    • Philosophy 1 and 3A
    • Physical Education 2B (Ballroom dancing)

Fortunately, the University allowed our naval science courses, given one per semester for four years, to be counted as “culture” courses even though about 80% of them were engineering oriented such as: navigation and nautical astronomy, piloting, meteorology, ordnance and gunnery, shipboard propulsion plants, naval architecture, and ship stability. We used the same textbooks as the Naval Academy, and they were excellent. I have been told that the Naval Academy and NROTC no longer teach celestial navigation, but rather the fleet depends on the Global Positioning System, inertial navigation systems, and electronic aids to navigation such as LORAN (Long Range Radio Navigation).

The reader may well ask why the course in ballroom dancing. It happened this way. In my second year, navy officials became concerned that NROTC midshipmen were not getting the same rigorous physical exercise regime as Naval Academy midshipmen, and they required that NROTC middies would take one physical education course per semester. The best I could do in an already crowded schedule of mandatory courses was to work in a ballroom dancing course offered by the Department of Physical Education, and it turned out most other engineering students could only do likewise. When we were called in to explain our selection, the NROTC administrators were convinced and dropped the Pysical. Ed. requirement.

The Aero Engineering curriculum courses are summarized as follows:

  • Chemistry - three courses
  • Physics - four courses
  • Drawing, descriptive geometry and drafting - five courses
  • General engineering design and problem solving - five courses
  • Materials, processes, and strength of materials - two courses
  • Static structural stress analysis - one course
  • Mechanisms, kinematics and dynamics - two courses
  • Aerodynamics and aircraft stability & control - nine courses
  • General mechanical engineering - two courses
  • Electrical engineering - two courses
  • Fluid mechanics - one course
  • Thermodynamics - one course
  • Aircraft design, including structures - 16 courses
  • Physics of the atmosphere - one course
  • Aircraft engines (reciprocating and gas turbine) - five courses


The Department of Aeronautical Engineering had some very interesting personages on the teaching staff. First there was Department Head, Professor John D. Ackerman. Born in Latvia, he had started his aviation career as a pilot in the Imperial Russian Air Force, and then immigrated to the U.S. where he gained his aero engineering degree at the University of Michigan in 1925. Then he went to work for the Ford Stout Airplane Company on the design of the Ford Trimotor. After that he rose to chief engineer of the Mohawk Aircraft Corp. where he designed the Mohawk Pinto and Redskin, two highly advanced airplanes of the 1920s. In 1929 he was asked to form the Department of Aero Engineering at Minnesota, and in 1939, with the help of his students, he designed one of the world’s first flying wings. Professor Ackerman and his students built the machine, and he test flew the flying wing himself. He would often entertain us with his story of his first and only test flight in the flying wing.

Dr. Jean Piccard, twin brother of balloonist August Piccard, was our physics of the atmosphere professor, and he was also a research balloonist. In 1934 he and his wife Jeanette had risen to a height of 57,000 feet in a balloon of their own design to study cosmic rays. Dr. Piccard ran the experiment while Jeanette piloted the balloon. In our classes, Dr. Piccard would tell us how he wanted to get sponsorship to make a balloon ascension to 100,000 feet to study the light from Mars through a spectroscope to try to find evidence of oxygen and water on the planet. The spherical aluminum gondola from his 1934 ascension was still in our hangar and we could climb down in it and imagine what it might be like riding in it at 100,000 feet. We would see Dr. Piccard often walking about the campus with his hands folded behind him and stooped slightly forward; deep in though. He was probably planning his next balloon ascension. [24, p.128]

Our supersonic aerodynamics professor was Dr. Rudolph Herman. He had been chief aerodynamicist on Dr. Werner von Braun’s German V-2 rocket project, and in charge of the Peenemünde Research Station supersonic wind tunnels. When Dr. Herman learned that the Allies would soon be occupying Peenemünde, he buried a number of his wind tunnel rocket models in his back yard, and then brought them with him when he came to America. We could see the models proudly arrayed on his desk, and he told us he bought his Oldsmobile Rocket 88 auto because he loved the rocket hood ornament. [12, p.114]

The Rosemount Aeronautical Research Laboratory

During World War II the U.S. Government set up a sprawling explosives manufacturing plant called the Gopher Ordnance Works at Rosemount, Minn., some 24 miles south of the U of Minnesota campus. At war’s end the War Assets Administration desired to rid itself of the facility, and invited faculty of the University engineering school to assess it for possible use by the University. Professor Ackerman was particularly interested in the plant’s banks of air compressors and huge pressure tanks. In them he could see the basic components of supersonic and hypersonic wind tunnels. Here, hypersonic is defined as air speeds of Mach 5 or greater, and Mach number,in turn, is defined as the ratio of local air speed to the speed of sound in air. His idea was that one of the large air tanks could be highly pressurized while another tank could be evacuated of air. By connecting a wind tunnel between the two tanks, hypersonic air speeds could be achieved in a test section. He called it a “blow-down” tunnel. In 1946, Akerman started negotiations with the War Assets Administration resulting in the transfer of Gopher Ordnance Works to the University for the price of $1.00. He then obtained federal grants to build a number of wind tunnels ranging from transonic to hypersonic. The University soon had contracts with the National Advisory Committee for Aeronautics (NACA), the Air Force, the Navy, and industry to perform advanced aeronautical research. [62, pp.16-36]

By 1953, my mother had moved to the Twin Cities, and I was living at home, which greatly reduced my college living expenses. But I realized I was going to have to find work to build up a fund to cover the tuition, books, and other costs of the fifth year; that the Navy would not be covering. At the beginning of my fourth year I mentioned my job hunting quest to one of our instructors who asked if I had considered work at the Rosemount Lab. He said it was Professor Ackerman’s policy that any aero engineering student who needed work could get a job at the lab. Three days later, after buying a 1941 Plymouth commuting sedan for $250.00, I reported for work at the lab. I was assigned to Dr. Frank D. Werner’s wind tunnel instrumentation group, and my first task was to do the engineering drawing of a hypersonic wind tunnel nozzle block from a contour table provided by one of the engineers. The block was about a foot wide and five feet long. It would be machined out of a blank of solid steel, and two of the blocks facing each other would form the symmetrical test section constriction in the wind tunnel where the air speed would be the fastest. Part of the job would be to go over to the machine shop occasionally and check on the progress of the blocks.

One of my most interesting assignment during my almost two-year stint at the lab was helping in the manufacture of digital pressure gauges under an Air Force contract. Dr. Werner had invented the digital pressure gauge in response to an Air Force request. It involved two very thin glass diaphragms in a sealed chamber. The diaphragms were so thin that they bent in and out with changes in air pressure fed by a tube from whatever pressure source was being measured. The inside surfaces of the diaphragms were coated with aluminum and they formed the two sides of a capacitor. The capacitor was part of a resonant electronic circuit whose frequency varied in proportion to the distance between the diaphragms. An electronic frequency counter completed the gauge system so that measured pressure could be read out as a discrete number.

I asked Dr. Werner how the Air Force used the gauges, and he told me how they were instrumenting one of their wind tunnels at the Arnold Engineering Development Center in Tulahoma, Tennessee, with a digital computer. The numerical readout of the gauges would be fed directly into the computer that then digested volumes of data without human intervention. I would not learn until many years later that their digital computer, designated an ERA 1102, had been built by a pioneering start-up company named Engineering Research Associates, and that company was located right here in the Twin Cities on Minnehaha Ave. just a couple miles east of the Minnesota Campus. Also later, I would learn that the Air Force computer was a commercial copy of the super secret Navy Atlas codebreaking computer, one of the first digital computers in the world. [59, p.491]

Two of the supersonic blow down wind tunnels at the Rosemount Aeronautical Research Lab. Scanned from University of Minnesota Institute of Technology Department of Aeronautical Engineering Research Report 105 - Aeronautical research facilities, 1954 p. 29

There were many drafting and design assignments for wind tunnel components and instrumentation, but my favorite occupation was producing the digital pressure gauges. One day I might work on the etching baths creating the thin glass diaphragms, and the next day sputtering the aluminum coating on them. Then would come their assembly with epoxy. The best part was running the pressure vs. frequency calibration curves. I could come in in very early in the morning and study between the calibration steps that took about ten minutes each.

One of the most interesting characters in the instrumentation group was Dr. Tung Shen Lieu. He had been an aeronautical engineering student in China during World War II; and he showed us photos of his school’s bamboo wind tunnel. After the Doolittle raid on Tokyo, Lieutenant Colonel Jimmy Doolittle’s B-25 had crash landed near his school and he had helped Doolittle and his crew get through the Japanese lines and out of China. After the war, Doolittle asked Lieu what he could do in return, and Lieu replied he would like to come to America to continue his education. Doolittle arranged it, and Dr. Lieu ended up running tests in the hypersonic wind tunnels at the Rosemount Lab. Dr. Lieu had an excellent set of drawing instruments which he would piecemeal lend out to the student draftsmen, who could not afford a set or had to use their tools in daily class work. Every Friday afternoon Dr. Lieu would take inventory of his tools by circulating among the drafting tables with open case. With a grin, he would call out, “Fill it up, fill it up.” When his inventory was complete he would let the students check the instruments out again.

My career goal during the five years at the University of Minnesota had been to be a naval aviator, and then be an engineering test pilot. My eyesight had actually gotten a little better since freshman year, and in the middle of my fifth year I went down to Naval Air Station, Minneapolis, to take the flight physical exam. This time they got me dead to rights; no way could I get into aviation. Toward the end of the fifth year orders arrived to report to the USS Henry W. Tucker (DDR-875), a radar picket destroyer based at Long Beach, California. There I would find one great compensation for not getting into naval aviation; I would find my future wife, Marian.

Click here to proceed to Chapter 4 of the Experimental Research Airplanes and the Sound Barrier